Tool wear, economic costs, and CO2 emissions analysis in cryogenic assisted hard-turning process of AISI 52100 steel
Tài liệu tham khảo
Goindi, 2017, Dry machining: a step towards sustainable machining–challenges and future directions, J. Clean. Prod., 165, 1557, 10.1016/j.jclepro.2017.07.235
Glenn, 1998, Opportunities and market trends in metalworking fluids, Tribol. Lubr. Technol., 54, 31
Klocke, 1997, Dry cutting, CIRP Ann., 46, 519, 10.1016/S0007-8506(07)60877-4
U.S. Energy Information Administration, 2011
Liu, 2016, Energy consumption and process sustainability of hard milling with tool wear progression, J. Mater. Process. Technol., 229, 305, 10.1016/j.jmatprotec.2015.09.032
Jeswiet, 2008, Carbon emissions and CES™ in manufacturing, CIRP Ann. Manuf. Technol., 57, 17, 10.1016/j.cirp.2008.03.117
Rajemi, 2010, Sustainable machining: selection of optimum turning conditions based on minimum energy considerations, J. Clean. Prod., 18, 1059, 10.1016/j.jclepro.2010.01.025
Yoon, 2014, Empirical power-consumption model for material removal in three-axis milling, J. Clean. Prod., 78, 54, 10.1016/j.jclepro.2014.03.061
Balogun, 2013, Modelling of direct energy requirements in mechanical machining processes, J. Clean. Prod., 41, 179, 10.1016/j.jclepro.2012.10.015
Narita, 2008, Environmental burden analysis for machining operation using LCA method, 65
Pimenov, 2021, Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect, J. Mater. Res. Technol., 11, 719, 10.1016/j.jmrt.2021.01.031
Khanna, 2021, Review on design and development of cryogenic machining setups for heat resistant alloys and composites, J. Manuf. Process., 68, 398, 10.1016/j.jmapro.2021.05.053
Mia, 2018, An approach to cleaner productionfor machining hardened steel using different cooling-lubrication conditions, J. Clean. Prod., 187, 1069, 10.1016/j.jclepro.2018.03.279
Pusavec, 2010, Transitioning to sustainable production–part I: application on machining technologies, J. Clean. Prod., 18, 174, 10.1016/j.jclepro.2009.08.010
Pereira, 2016, Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304, J. Clean. Prod., 139, 440, 10.1016/j.jclepro.2016.08.030
Lu, 2014
Hong, 2001, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf., 41, 2245, 10.1016/S0890-6955(01)00041-4
Courbon, 2013, Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—application to the context of machining with carbide tools, Tribol. Int., 66, 72, 10.1016/j.triboint.2013.04.010
Ding, 2011, Experimental evaluation and modeling analysis of micromilling of hardened H13 tool steels, J. Manuf. Sci. Eng., 133, 10.1115/1.4004499
Bermingham, 2016, New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, Int. J. Mach. Tools Manuf., 51, 500, 10.1016/j.ijmachtools.2011.02.009
Wang, 2000, Cryogenic machining of hard-to-cut materials, Wear, 239, 168, 10.1016/S0043-1648(99)00361-0
Mia, 2019, Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V, J. Clean. Prod., 210, 121, 10.1016/j.jclepro.2018.10.334
González, 2021, Flank-milling of integral blade rotors made in Ti6Al4V using Cryo CO2 and minimum quantity lubrication, ASME J. Manuf. Sci. Eng., 143, 10.1115/1.4050548
Khanna, 2021, In pursuit of sustainable cutting fluid strategy for machining Ti-6Al-4V using life cycle analysis, Sustain. Mater. Technol., 29
Ghosh, 2003, Cryogenic machining with brittle tools and effects on tool life, 3, 201
Umbrello, 2012, The effects of cryogenic cooling on surface integrity in hard machining: a comparison with dry machining, CIRP Ann., 61, 103, 10.1016/j.cirp.2012.03.052
Biček, 2012, Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel, J. Manuf. Process., 212, 2609
Çetindağ, 2020, The effects of CryoMQL conditions on tool wear and surface integrity in hard turning of AISI 52100 bearing steel, J. Manuf. Process., 56, 463, 10.1016/j.jmapro.2020.05.015
Kim, 2016, Influence of a micropatterned insert on characteristics of the tool–workpiece interface in a hard turning process, J. Mater. Process. Technol., 229, 160, 10.1016/j.jmatprotec.2015.09.018
2005, Capability profile of hard cutting and grinding processes, CIRP Ann., 54, 22, 10.1016/S0007-8506(07)60018-3
Xu, 2009, Wear behavior of Al2O3/Ti (C, N)/SiC new ceramic tool material when machining tool steel and cast iron, J. Mater. Process. Technol., 209, 4633, 10.1016/j.jmatprotec.2008.10.017
Pusavec, 2016, Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance, J. Mater. Process. Technol., 233, 19, 10.1016/j.jmatprotec.2016.02.003
Pereira, 2017, Nozzle design for combined use of MQL and cryogenic gas in machining, Int. J. Precis. Eng. Manuf.-GT, 4, 87
Tahri, 2017, CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V, Procedia CIRP, 58, 584, 10.1016/j.procir.2017.03.230
Ansys, 2015
Cengel, 2014
Nagano, 1987, Improved form of the k-ε model for wall turbulent shear flows, J. Fluids Eng., 109, 156, 10.1115/1.3242636
Ubbink, 1999, A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153, 26, 10.1006/jcph.1999.6276
Ansys, 2015
Bertolini, 2020, Surface integrity and corrosion performances of hardened bearing steel after hard turning, Int. J. Adv. Manuf. Technol., 108, 1983, 10.1007/s00170-020-05352-4
López de Lacalle, 2001, Turning of thick thermal spray coatings, J. Therm. Spray Tech., 10, 249, 10.1361/105996301770349349
Stephenson, 2018
Bogajo, 2020, A novel indirect cryogenic cooling system for improving surface finish and reducing cutting forces when turning ASTM F-1537 cobalt-chromium alloys, Int. J. Adv. Manuf. Technol., 111, 1971, 10.1007/s00170-020-06193-x
Jebaraj, 2020, Effect of LN2 and CO2 coolants in milling of 55NiCrMoV7 steel, J. Manuf. Process., 53, 318, 10.1016/j.jmapro.2020.02.040
Hong, 2000, Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel, Clean. Technol. Environ., 2, 157
Pusavec, 2010, Transitioning to sustainable production–part II: evaluation of sustainable machining technologies, J. Clean. Prod., 18, 1211, 10.1016/j.jclepro.2010.01.015
Ramesh, 2008, Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel, Int. J. Mach. Tool Manuf., 48, 402, 10.1016/j.ijmachtools.2007.09.007