Tool wear, economic costs, and CO2 emissions analysis in cryogenic assisted hard-turning process of AISI 52100 steel

Sustainable Materials and Technologies - Tập 30 - Trang e00349 - 2021
Dong Min Kim1, Hyung Ick Kim1, Hyung Wook Park2
1Dongnam Division, Korea Institute of Industrial Technology, 25, Yeonkkot-ro 165beon-gil, Jeongchon-myeon, Jinju-si 52845, Gyeongsangnam-do, Republic of Korea
2Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44929, Republic of Korea

Tài liệu tham khảo

Goindi, 2017, Dry machining: a step towards sustainable machining–challenges and future directions, J. Clean. Prod., 165, 1557, 10.1016/j.jclepro.2017.07.235 Glenn, 1998, Opportunities and market trends in metalworking fluids, Tribol. Lubr. Technol., 54, 31 Klocke, 1997, Dry cutting, CIRP Ann., 46, 519, 10.1016/S0007-8506(07)60877-4 U.S. Energy Information Administration, 2011 Liu, 2016, Energy consumption and process sustainability of hard milling with tool wear progression, J. Mater. Process. Technol., 229, 305, 10.1016/j.jmatprotec.2015.09.032 Jeswiet, 2008, Carbon emissions and CES™ in manufacturing, CIRP Ann. Manuf. Technol., 57, 17, 10.1016/j.cirp.2008.03.117 Rajemi, 2010, Sustainable machining: selection of optimum turning conditions based on minimum energy considerations, J. Clean. Prod., 18, 1059, 10.1016/j.jclepro.2010.01.025 Yoon, 2014, Empirical power-consumption model for material removal in three-axis milling, J. Clean. Prod., 78, 54, 10.1016/j.jclepro.2014.03.061 Balogun, 2013, Modelling of direct energy requirements in mechanical machining processes, J. Clean. Prod., 41, 179, 10.1016/j.jclepro.2012.10.015 Narita, 2008, Environmental burden analysis for machining operation using LCA method, 65 Pimenov, 2021, Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect, J. Mater. Res. Technol., 11, 719, 10.1016/j.jmrt.2021.01.031 Khanna, 2021, Review on design and development of cryogenic machining setups for heat resistant alloys and composites, J. Manuf. Process., 68, 398, 10.1016/j.jmapro.2021.05.053 Mia, 2018, An approach to cleaner productionfor machining hardened steel using different cooling-lubrication conditions, J. Clean. Prod., 187, 1069, 10.1016/j.jclepro.2018.03.279 Pusavec, 2010, Transitioning to sustainable production–part I: application on machining technologies, J. Clean. Prod., 18, 174, 10.1016/j.jclepro.2009.08.010 Pereira, 2016, Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304, J. Clean. Prod., 139, 440, 10.1016/j.jclepro.2016.08.030 Lu, 2014 Hong, 2001, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf., 41, 2245, 10.1016/S0890-6955(01)00041-4 Courbon, 2013, Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—application to the context of machining with carbide tools, Tribol. Int., 66, 72, 10.1016/j.triboint.2013.04.010 Ding, 2011, Experimental evaluation and modeling analysis of micromilling of hardened H13 tool steels, J. Manuf. Sci. Eng., 133, 10.1115/1.4004499 Bermingham, 2016, New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, Int. J. Mach. Tools Manuf., 51, 500, 10.1016/j.ijmachtools.2011.02.009 Wang, 2000, Cryogenic machining of hard-to-cut materials, Wear, 239, 168, 10.1016/S0043-1648(99)00361-0 Mia, 2019, Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V, J. Clean. Prod., 210, 121, 10.1016/j.jclepro.2018.10.334 González, 2021, Flank-milling of integral blade rotors made in Ti6Al4V using Cryo CO2 and minimum quantity lubrication, ASME J. Manuf. Sci. Eng., 143, 10.1115/1.4050548 Khanna, 2021, In pursuit of sustainable cutting fluid strategy for machining Ti-6Al-4V using life cycle analysis, Sustain. Mater. Technol., 29 Ghosh, 2003, Cryogenic machining with brittle tools and effects on tool life, 3, 201 Umbrello, 2012, The effects of cryogenic cooling on surface integrity in hard machining: a comparison with dry machining, CIRP Ann., 61, 103, 10.1016/j.cirp.2012.03.052 Biček, 2012, Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel, J. Manuf. Process., 212, 2609 Çetindağ, 2020, The effects of CryoMQL conditions on tool wear and surface integrity in hard turning of AISI 52100 bearing steel, J. Manuf. Process., 56, 463, 10.1016/j.jmapro.2020.05.015 Kim, 2016, Influence of a micropatterned insert on characteristics of the tool–workpiece interface in a hard turning process, J. Mater. Process. Technol., 229, 160, 10.1016/j.jmatprotec.2015.09.018 2005, Capability profile of hard cutting and grinding processes, CIRP Ann., 54, 22, 10.1016/S0007-8506(07)60018-3 Xu, 2009, Wear behavior of Al2O3/Ti (C, N)/SiC new ceramic tool material when machining tool steel and cast iron, J. Mater. Process. Technol., 209, 4633, 10.1016/j.jmatprotec.2008.10.017 Pusavec, 2016, Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance, J. Mater. Process. Technol., 233, 19, 10.1016/j.jmatprotec.2016.02.003 Pereira, 2017, Nozzle design for combined use of MQL and cryogenic gas in machining, Int. J. Precis. Eng. Manuf.-GT, 4, 87 Tahri, 2017, CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V, Procedia CIRP, 58, 584, 10.1016/j.procir.2017.03.230 Ansys, 2015 Cengel, 2014 Nagano, 1987, Improved form of the k-ε model for wall turbulent shear flows, J. Fluids Eng., 109, 156, 10.1115/1.3242636 Ubbink, 1999, A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153, 26, 10.1006/jcph.1999.6276 Ansys, 2015 Bertolini, 2020, Surface integrity and corrosion performances of hardened bearing steel after hard turning, Int. J. Adv. Manuf. Technol., 108, 1983, 10.1007/s00170-020-05352-4 López de Lacalle, 2001, Turning of thick thermal spray coatings, J. Therm. Spray Tech., 10, 249, 10.1361/105996301770349349 Stephenson, 2018 Bogajo, 2020, A novel indirect cryogenic cooling system for improving surface finish and reducing cutting forces when turning ASTM F-1537 cobalt-chromium alloys, Int. J. Adv. Manuf. Technol., 111, 1971, 10.1007/s00170-020-06193-x Jebaraj, 2020, Effect of LN2 and CO2 coolants in milling of 55NiCrMoV7 steel, J. Manuf. Process., 53, 318, 10.1016/j.jmapro.2020.02.040 Hong, 2000, Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel, Clean. Technol. Environ., 2, 157 Pusavec, 2010, Transitioning to sustainable production–part II: evaluation of sustainable machining technologies, J. Clean. Prod., 18, 1211, 10.1016/j.jclepro.2010.01.015 Ramesh, 2008, Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel, Int. J. Mach. Tool Manuf., 48, 402, 10.1016/j.ijmachtools.2007.09.007