Tolerance response and metabolism of acetic acid by biodetoxification fungus Amorphotheca resinae ZN1
Tài liệu tham khảo
Ashburner, 2000, Gene ontology: tool for the unification of biology, Nat. Genet., 25, 25, 10.1038/75556
Bellido, 2011, Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis, Bioresour. Technol., 102, 10868, 10.1016/j.biortech.2011.08.128
Dong, 2010, Metabolism: biofuel via biodetoxification, Nat. Chem. Biol., 6, 316, 10.1038/nchembio.355
Draghici, 2007, A systems biology approach for pathway level analysis, Genome Res., 17, 1537, 10.1101/gr.6202607
Fonseca, 2011, Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast, J. Ind. Microbiol. Biotechnol., 38, 199, 10.1007/s10295-010-0845-z
Grundy, 1994, Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA, J. Bacteriol., 176, 4527, 10.1128/JB.176.15.4527-4533.1994
He, 2016, Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation, Biotechnol. Biofuels, 9, 19, 10.1186/s13068-016-0438-9
Helle, 2003, Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae, Enzyme Microb. Technol., 33, 786, 10.1016/S0141-0229(03)00214-X
Kannisto, 2015, Metabolic engineering of Acinetobacter baylyi ADP1 for removal of Clostridium butyricum growth inhibitors produced from lignocellulosic hydrolysates, Biotechnol. Biofuels, 8, 198, 10.1186/s13068-015-0389-6
Kirkpatrick, 2001, Acetate and formate stress: opposite responses in the proteome of Escherichia coli, J. Bacteriol., 183, 6466, 10.1128/JB.183.21.6466-6477.2001
Kothari, 2011, Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc, Appl. Biochem. Biotechnol., 165, 1391, 10.1007/s12010-011-9355-3
Lakshmanaswamy, 2011, Microbial removal of acetate selectively from sugar mixtures, J. Ind. Microbiol. Biotechnol., 38, 1477, 10.1007/s10295-010-0932-1
Li, 2010, Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 86, 1915, 10.1007/s00253-010-2518-2
Lindberg, 2013, Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress, PLoS One, 8, 10.1371/journal.pone.0073936
Liu, 2017, Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production, Biotechnol. Bioeng.
Ludovico, 2001, Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid, Microbiology, 147, 2409, 10.1099/00221287-147-9-2409
Madrid, 1998, Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential, J. Biol. Chem., 273, 14838, 10.1074/jbc.273.24.14838
Mira, 2010, Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid, Microb. Cell Fact., 9, 79, 10.1186/1475-2859-9-79
Palmqvist, 2000, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresour. Technol., 74, 25, 10.1016/S0960-8524(99)00161-3
Parawira, 2011, Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review, Crit. Rev. Biotechnol., 31, 20, 10.3109/07388551003757816
Rodrigues, 2012, The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii, PLoS One, 7, 10.1371/journal.pone.0052402
Schneider, 1996, Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast, Enzyme Microb. Technol., 19, 94, 10.1016/0141-0229(95)00241-3
Tsai, 1989, Acetate assimilation by the fission yeast, Schizosaccharomyces pombe, Biochem. Cell Biol., 67, 464, 10.1139/o89-073
Wang, 2016, Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock, Bioresour. Technol., 218, 892, 10.1016/j.biortech.2016.06.130
Wang, 2015, Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment, Biotechnol. Biofuels, 8, 136, 10.1186/s13068-015-0323-y
Wendisch, 2000, Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose, J. Bacteriol., 182, 3088, 10.1128/JB.182.11.3088-3096.2000
Wendisch, 1997, Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes, Arch. Microbiol., 168, 262, 10.1007/s002030050497
Wolfe, 2005, The acetate switch, Microbiol. Mol. Biol. Rev., 69, 12, 10.1128/MMBR.69.1.12-50.2005
Yang, 2008, Pretreatment: the key to unlocking low-cost cellulosic ethanol, Biofuels Bioprod. Biorefin., 2, 26, 10.1002/bbb.49
Yang, 2014, Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates, Biotechnol. Biofuels, 7, 140, 10.1186/s13068-014-0140-8
Yi, 2016, Engineering wild-type robust Pediococcus acidilactici strain for high titer l- and d-lactic acid production from corn stover feedstock, J. Biotechnol., 217, 112, 10.1016/j.jbiotec.2015.11.014
Zhang, 2016, Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis, Bioresour. Technol., 219, 123, 10.1016/j.biortech.2016.07.068
Zhang, 2009, Novel isolates for biological detoxification of lignocellulosic hydrolysate, Appl. Biochem. Biotechnol., 152, 199, 10.1042/BA20080068
Zhang, 2011, Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production, Bioresour. Technol., 102, 4480, 10.1016/j.biortech.2011.01.005
Zhang, 2010, Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation, Biotechnol. Biofuels, 3, 26, 10.1186/1754-6834-3-26