Tolerance limit for fish growth exceeded by warming waters

Nature Climate Change - Tập 1 Số 2 - Trang 110-113 - 2011
Anna B. Neuheimer1, Ronald E. Thresher1, JM Lyle2, Jayson M. Semmens2
1Commonwealth Scientific and Industrial Research Organization (Australia) Climate Adaptation Flagship, Hobart, Tasmania 7001, GPO Box 1538, Australia
2Fisheries Aquaculture and Coasts Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish. Biol. 77, 1745–1779 (2010).

Brander, K. Impacts of climate change on fisheries. ICES J. Mar. Sci. 79, 389–402 (2010).

Pörtner, H-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

Wang, T. & Overgaard, J. The heartbreak of adapting to global warming. Science 315, 49–50 (2007).

Cai, W., Shi, G., Cowan, T., Bi, D. & Ribbe, J. The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett. 32, L23706 (2005).

Fry, F. E. I. in Fish Physiology Vol. VI Environmental Relations and Behavior (eds Hoar, W. S. & Randall, D. J.) 1–99 (Academic, 1971).

Takasuka, A. & Aoki, I. Environmental determinants of growth rates for larval Japanese anchovy Engraulis japonicus in different waters. Fish. Oceanogr. 15, 139–149 (2006).

Pörtner, H-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

Katersky, R. S. & Carter, C. G. High growth efficiency occurs over a wide temperature range for juvenile barramundi Lates calcarifer fed a balanced diet. Aquaculture 272, 444–450 (2007).

Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).

Pecl, G. et al. The East Coast Tasmanian Rock Lobster Fishery—Vulnerability to Climate Change Impacts and Adaptation Response Options (Australian Government Department of Climate Change, 2009).

Hill, K. L., Rintoul, S. R., Coleman, R. & Ridgway, K. R. Wind forced low frequency variability of the East Australia Current. Geophys. Res. Lett. 35, L08602 (2008).

Campana, S. E. & Neilson, J. D. Microstructure of fish otoliths. Can. J. Fish. Aquat. Sci. 42, 1014–1032 (1985).

Neilson, J. D. & Geen, G. H. Effects of feeding regimes and diel temperature cycles on otolith increment formation in juvenile chinook salmon, Oncorhynchus tshawytscha. Fish. Bull. 83, 91–101 (1985).

Chambers, R. C. & Miller, T. J. in Recent Developments in Otolith Research (eds Secor, S. H., Dean, J. M. & Campana, S. E.) 155–175 (Univ. South Carolina Press, 1995).

Thresher, R. E., Koslow, J. A., Morison, A. K. & Smith, D. C. Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proc. Natl Acad. Sci. USA 104, 7461–7465 (2007).

Ewing, G. P., Lyle, J. M., Murphy, R. J., Kalish, J. M. & Ziegler, P. E. Validation of age and growth in a long-lived temperate reef fish using otolith structure, oxytetracycline and bomb radiocarbon methods. Mar. Freshwat. Res. 58, 944–955 (2007).

Armsworthy, S. L. & Campana, S. E. Age determination, bomb-radiocarbon validation and growth of Atlantic halibut (Hippoglossus hippoglossus) from the Northwest Atlantic. Environ. Biol. Fish. 89, 279–295 (2010).

Ziegler, P. E., Lyle, J. M., Haddon, M. & Ewing, G. P. Rapid changes in life-history characteristics of a long-lived temperate reef fish. Mar. Freshwat. Res. 58, 1096–1107 (2007).

Grewe, P. M., Smolenski, A. J. & Ward, R. D. Mitochondrial DNA variation in jackass morwong, Nemadactylus macropterus (Teleostei: Cheilodactylidae) from Australian and New Zealand waters. Can. J. Fish. Aquat. Sci. 51, 1101–1109 (1994).

Murphy, R. J. & Lyle, J. M. Impact of Gillnet Fishing on Inshore Temperate Reef Fishes, with Particular Reference to Banded Morwong. FRDC Project No. 95/145 (Marine Research Laboratories—Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, 1999).

McCormick, M. I. & Choat, J. H. Estimating total abundance of a large temperate-reef fish using visual strip-transects. Mar. Biol. 96, 469–478 (1987).

Rayner, N. A. et al. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 Dataset. J. Clim. 19, 446–469 (2006).

Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C. & Pinnegar, J. K. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66, 1570–1583 (2009).

Heinimaa, S. & Heinimaa, P. Effect of the female size on egg quality and fecundity of the wild Atlantic salmon in the sub-arctic River Teno. Bor. Environ. Res. 9, 55–62 (2004).

Mittelbach, G. G. Foraging efficiency and body size: A study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386 (1981).

Beamish, R. J., Mahnken, C. & Neville, C. M. Evidence that reduced early marine growth is associated with lower marine survival of coho salmon. Trans. Am. Fisheries Soc. 133, 26–33 (2004).

Pörtner, H-O. et al. Cod and climate in a latitudinal cline: Physiological analyses of climate effects in marine fishes. Clim. Res. 37, 253–270 (2008).

Neuheimer, A. B. & Taggart, C. T. Can changes in length-at-age and maturation timing in Scotian Shelf haddock (Melanogrammus aeglefinus) be explained by fishing? Can. J. Fish. Aquat. Sci. 67, 854–865 (2010).

Clark, T. D. & Seymour, R. S. Cardiorespiratory physiology and swimming energetics of a high-energy-demand teleost, the yellowtail kingfish (Seriola lalandi). J. Exp. Biol. 209, 3940–3951 (2006).