cDNA Nia2 từ thuốc lá bổ sung chức năng cho một đột biến nấm men Hansenula polymorpha thiếu reductase nitrate. Hệ thống biểu hiện mới để nghiên cứu các protein thực vật liên quan đến sự đồng hóa nitrate

Germán Perdomo1, Francisco J. Navarro, Braulio Medina, Félix Machín1, Paula Tejera1, José M. Siverio1
1Universidad de La Laguna, La Laguna, Tenerife, Canarias, Spain

Tóm tắt

Một vector biểu hiện tích hợp dựa trên các trình tự phiên mã promoter và terminator từ gen reductase nitrate Hansenula polymorpha (YNR1) đã được phát triển để biểu hiện các gen đồng hóa nitrate của thực vật trong nấm men H. polymorpha. Sử dụng vector này, một cDNA reductase nitrate từ thực vật (Nia2 từ cây thuốc lá) đã được biểu hiện lần đầu tiên trong một nấm men đồng hóa nitrate. Reductase nitrate dị hợp loài sản xuất được giữ lại các thuộc tính sinh hóa và sinh lý của nó như hoạt tính reductase nitrate phụ thuộc NADH, và cho phép phát triển trong môi trường chứa nitrate ở một dòng thiếu hoạt tính reductase nitrate nội sinh. Trong dòng chuyển gen, hoạt tính reductase nitrate thuốc lá tối đa khoảng 70% so với mức độ có ở kiểu dại. Mặt khác, sự biến mất của hoạt tính reductase nitrate tương quan với sự biến mất của protein enzyme khi bổ sung ammonium vào môi trường và diễn ra nhanh hơn trong dòng chuyển gen so với kiểu dại. Hoạt tính reductase nitrate của dòng tái tổ hợp được kiểm tra trong sự hiện diện của Mg2+ khoảng 30% so với khi được kiểm tra với EDTA. Kết quả này, cùng với tỷ lệ tăng trưởng giảm trong môi trường nitrate, cho thấy rằng reductase nitrate từ thuốc lá có thể bị bất hoạt một phần trong H. polymorpha bởi sự phosphoryl hóa và gắn kết của các protein giống 14-3-3. Những kết quả này cho thấy H. polymorpha là một hệ thống biểu hiện nấm men dị hợp loài hữu ích để nghiên cứu các protein thực vật liên quan đến sự đồng hóa nitrate.

Từ khóa

#Hansenula polymorpha #cDNA Nia2 #reductase nitrate #cây thuốc lá #đồng hóa nitrate #hệ thống biểu hiện.

Tài liệu tham khảo

Agaphonov, M.O., Poznyakovski, A.I., Bogdanova, A.I. and Ter-Avanesyan, M.D. 1994. Isolation and characterization of the LEU2 gene of Hansenula polymorpha. Yeast 10: 509–513.

Ávila, J., Pérez, M.D., Brito, N., González, C., and Siverio, J.M. 1995. Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett. 366: 137–142.

Ávila, J., González, C., Brito, N. and Siverio, J.M. 1998. Clustering of the YNA1 gene encoding a Zn(II)2CyS6transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1, and its involvement in their transcriptional activation. Biochem. J. 335: 647–652.

Bachmann, M., Shiraishi, N., Campbell, W.H., Yoo, B.C., Harmon, A.C. and Huber, S.C. 1996. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8: 505–517.

Berardi, E. and Thomas, D.Y. 1990. An effective transformation method for Hansenula polymorpha. Curr. Genet. 18: 169–170.

Brito, N., Ávila, J., Pérez, M.D., González, C. and Siverio, J.M. 1996. The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductasa respectively in the yeast Hansenula polymorpha. Biochem. J. 317: 89–95.

Brito, N., Pérez M.D., Perdomo, G., González, C., García-Lugo, P. and Siverio, J.M. 1999. A set of Hansenula polymorpha integrative vectors to construct lacZ fusions. Appl. Microbiol. Biotechnol. 53: 23–29.

Faber, N.K., Haima, P., Harder, W., Veenhuis, M. and Geert, AB. 1994. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr. Genet. 25: 305–310.

Finnie, C., Borch, J. and Collinge, D.B. 1999. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol. Biol. 40: 545–554.

Forde, B. 2000. Nitrate transporters in plants: structure, function and regulation. Biochim. Biophys. Acta. 1465: 219–235.

González, C., Perdomo, G., Tejera, P., Brito, N. and Siverio, J.M. 1999. One step, PCR-mediated, gene disruption in the yeast Hansenula polymorpha. Yeast 15: 1323–1329.

González, C. and Siverio, J.M. 1992. Effect of nitrogen source on the levels of nitrate reductase in the yeast Hansenula anomala. J. Gen. Microbiol. 138: 1445–1451.

Hansen, H. and Hollenberg, C.P. 1996. Hansenula polymorpha (Pichia angusta). In: K. Wolf (Ed.) Nonconventional Yeast in Biotechnology, Springer, New York, pp. 293–311.

Kaiser, W.M. and Huber, S.C. 2001. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and enviromental triggers. J. Exp. Bot. 52: 1981–1989.

Kanamaru, K., Wnag, R., Su, W. and Crawford, N.M. 1999. Ser-534 in the hinge 1 region of Arabidopsis nitrate reductase is conditionally required for binding of 14-3-3 proteins and in vitro inhibition. J. Biol. Chem. 274: 4160–4165.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

Merckelbach, A., Gödecke, S., Janowicz, Z.A. and Hollenberg, C.P. 1993. Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorpha and its use for the generation of a deletion by gene replacement. Appl. Microbiol. Biotechnol. 40: 361–364.

Moorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, U., Stitt, M., Scarabel, M., Aitken, A. and Mackintosh, C. 1999. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J. 18: 1–12.

Perdomo, G. 1999. Regulación de la nitrato y nitrito reductasa en la levadura Hansenula polymorpha. Expresión heteróloga de la nitrato reductasa de Nicotiana tabacum. PhD dissertation, Universidad de La Laguna, Tenerife, Spain.

Pérez, M.D., González, C., Ávila, J., Brito, N. and Siverio, J.M. 1997. The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase, and its disruption causes inability to grow in nitrate. Biochem. J. 321: 397–403.

Pigaglio, E., Durand, N. and Meyer, C. 1999. A conserved acidic motif in the N-terminal domain of nitrate reductase is necessary for the inactivation of the enzyme in the dark by phosphorylation and 14-3-3 binding. Plant Physiol. 119: 219–229.

Quesada, A., Galván, A. and Fernández, E. 1994. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J. 5: 407–419.

Randez-Gil, F., Bojunga, N., Proft, M. and Entian, K.D. 1997. Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol. Cell. Biol. 17: 2502–2510.

Riesmaeier, J., Willmitzer, L. and Frommer W.B. 1992. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11: 4705–4713.

Su, W.P., Mertens, J.A., Kanamaru, K., Campbell, W.H. and Crawford, N.M. 1997. Analysis of wild-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris. Plant Physiol. 115: 1135–1143.

Sudbery, P.E. 1994. The non-Saccharomyces yeast. Yeast 10: 1707–1726.

Tan, X., Waterham, H.R., Veenhuis, M. and Cregg, J.M. 1995. The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J. Cell Biol. 128: 307–319.

Tanaka, M. and Herr,W. 1990. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60: 375–386.

Trueman, L.J., Richardson, A. and Forde, B.G. 1996. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene 175: 223–231.

Truong, H.N., Meyer, C. and Daniel-Vedele, F. 1991. Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae. Biochem. J. 278: 393–397.

Vaucheret, H., Kronenberger, J., Rouze, P. and Caboche, H. 1989. Complete nucleotide sequence of the two homologous tobacco nitrate reductase genes. Plant Mol. Biol. 12: 597–600.

Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V. and Cregg, J.M. 1997. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186: 37–44.

Zhou, J.J., Fernández, E., Galvan, A. and Miller, A.J. 2000. A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett. 466: 225–227.