To Do or Not to Do: The cerebellum and neocortex contribute to predicting sequences of social intentions
Tóm tắt
Humans read the minds of others to predict their actions and efficiently navigate social environments, a capacity called mentalizing. Accumulating evidence suggests that the cerebellum, especially Crus 1 and 2, and lobule IX are involved in identifying the sequence of others’ actions. In the current study, we investigated the neural correlates that underly predicting others’ intentions and how this plays out in the sequence of their actions. We developed a novel intention prediction task, which required participants to put protagonists’ behaviors in the correct chronological order based on the protagonists’ honest or deceitful intentions (i.e., inducing true or false beliefs in others). We found robust activation of cerebellar lobule IX and key mentalizing areas in the neocortex when participants ordered protagonists’ intentional behaviors compared with not ordering behaviors or to ordering object scenarios. Unlike a previous task that involved prediction based on personality traits that recruited cerebellar Crus 1 and 2, and lobule IX (Haihambo et al., 2021), the present task recruited only the cerebellar lobule IX. These results suggest that cerebellar lobule IX may be generally involved in social action sequence prediction, and that different areas of the cerebellum are specialized for distinct mentalizing functions.
Tài liệu tham khảo
Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45(7), 1363–1377. https://doi.org/10.1016/j.neuropsychologia.2006.10.016
Addis, D. R., Pan, L., Vu, M. A., Laiser, N., & Schacter, D. L. (2009). Constructive episodic simulation of the future and the past: Distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 47(11), 2222–2238. https://doi.org/10.1016/j.neuropsychologia.2008.10.026
Andrews-Hanna, J. R., Saxe, R., & Yarkoni, T. (2014a). Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage, 91, 324–335. https://doi.org/10.1016/j.neuroimage.2014.01.032
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014b). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29–52. https://doi.org/10.1111/nyas.12360
Atique, B., Erb, M., Gharabaghi, A., Grodd, W., & Anders, S. (2011). Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing. NeuroImage, 55(4), 1899–1911. https://doi.org/10.1016/j.neuroimage.2010.12.036
Baetens, K., Ma, N., Steen, J., & Van Overwalle, F. (2013). Involvement of the mentalizing network in social and non-social high construal. Social Cognitive and Affective Neuroscience, 9(6), 817–824. https://doi.org/10.1093/scan/nst048
Baetens, K., Firouzi, M., Van Overwalle, F., & Deroost, N. (2020). Involvement of the cerebellum in the serial reaction time task (SRT) (Response to Janacsek et al.). NeuroImage, 220, 117114. https://doi.org/10.1016/j.neuroimage.2020.117114
Biro, S., & Leslie, A. M. (2007). Infants’ perception of goal-directed actions: Development through cue-based bootstrapping. Developmental Science, 10(3), 379–398. https://doi.org/10.1111/j.1467-7687.2006.00544.x
Brunet, E., Sarfati, Y., Hardy-Baylé, M. C., & Decety, J. (2000). A PET investigation of the attribution of intentions with a nonverbal task. NeuroImage, 11(2), 157–166. https://doi.org/10.1006/nimg.1999.0525
Buckner, R., Krienen, F., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011
Caligiore, D., Arbib, M. A., Miall, R. C., & Baldassarre, G. (2019). The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neuroscience and Biobehavioral Reviews, 100, 19–34. https://doi.org/10.1016/j.neubiorev.2019.02.008
Cauda, F., Geda, E., Sacco, K., D’Agata, F., Duca, S., Geminiani, G., & Keller, R. (2011). Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. Journal of Neurology, Neurosurgery & Psychiatry, 82, 1304–1313. https://doi.org/10.1136/jnnp.2010.239111
Ciaramidaro, A., Adenzato, M., Enrici, I., Erk, S., Pia, L., Bara, B. G., & Walter, H. (2007). The intentional network: How the brain reads varieties of intentions. Neuropsychologia, 45(13), 3105–3113. https://doi.org/10.1016/j.neuropsychologia.2007.05.011
Cusack, R., & Papadakis, N. (2002). New robust 3-D phase unwrapping algorithms: Application to magnetic field mapping and undistorting echoplanar images. NeuroImage, 16(3 I), 754–764. https://doi.org/10.1006/nimg.2002.1092
Den Ouden, H. E. M., Frith, U., Frith, C., & Blakemore, S. J. (2005). Thinking about intentions. NeuroImage, 28(4), 787–796. https://doi.org/10.1016/j.neuroimage.2005.05.001
Duerden, E. G., Mak-Fan, K. M., Taylor, M. J., & Roberts, S. W. (2012). Regional differences in grey and white matter in children and adults with autism spectrum disorders: An activation likelihood estimate (ALE) meta-analysis. Autism Research, 5(1), 49–66. https://doi.org/10.1002/aur.235
Frith, C. D., & Frith, U. (2006). How we predict what other people are going to do. Brain Research, 1079(1), 36–46. https://doi.org/10.1016/j.brainres.2005.12.126
Grèzes, J., Frith, C., & Passingham, R. E. (2004). Brain mechanisms for inferring deceit in the actions of others. Journal of Neuroscience, 24(24), 5500–5505. https://doi.org/10.1523/JNEUROSCI.0219-04.2004
Guell, X., Schmahmann, J. D., Gabrieli, J. D. E., & Ghosh, S. S. (2018). Functional gradients of the cerebellum. ELife, 7(7), e36652. https://doi.org/10.7554/eLife.36652
Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., & Greicius, M. D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29(26), 8586–8594. https://doi.org/10.1523/JNEUROSCI.1868-09.2009
Haihambo, N., Ma, Q., Baeken, C., Deroost, N., Baetens, K., Heleven, E., & Van Overwalle, F. (2021). Social Thinking is for doing: The posterior cerebellum supports prediction of social actions based on personality traits. Social Cognitive and Affective Neuroscience. https://doi.org/10.1093/scan/nsab087
Heleven, E., & Van Overwalle, F. (2019). Neural representations of others in the medial prefrontal cortex do not depend on our knowledge about them. Social Neuroscience, 14(3), 286–299. https://doi.org/10.1080/17470919.2018.1472139
Heleven, E., van Dun, K., & Van Overwalle, F. (2019). The posterior Cerebellum is involved in constructing Social Action Sequences: An fMRI Study. Scientific Reports, 9(1), 11110. https://doi.org/10.1038/s41598-019-46962-7
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9(4), 304–313. https://doi.org/10.1038/nrn2332
Janacsek, K., Shattuck, K. F., Tagarelli, K. M., Lum, J. A. G., Turkeltaub, P. E., & Ullman, M. T. (2020). Sequence learning in the human brain: A functional neuroanatomical meta-analysis of serial reaction time studies. NeuroImage, 207, 116387. https://doi.org/10.1016/j.neuroimage.2019.116387
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., & Diedrichsen, J. (2019). Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience, 22(8), 1371–1378.
Leggio, M., & Molinari, M. (2015). Cerebellar Sequencing: a Trick for Predicting the Future. Cerebellum, 14(1), 35–38. https://doi.org/10.1007/s12311-014-0616-x
Li, M., Ma, Q., Baetens, K., Pu, M., Deroost, N., Baeken, C., & Van Overwalle, F. (2021). Social cerebellum in goal-directed navigation. Social Neuroscience, 16(5), 467–485. https://doi.org/10.1080/17470919.2021.1970017
Ma, Q., Pu, M., Haihambo, N. P., Baetens, K., Heleven, E., Deroost, N., & Van Overwalle, F. (2021a). The posterior cerebellum and temporoparietal junction support explicit learning of social belief sequences. Cognitive, Affective and Behavioral Neuroscience. https://doi.org/10.3758/s13415-021-00966-x
Ma, Q., Pu, M., Heleven, E., Haihambo, N. P., Baetens, K., Baeken, C., & Van Overwalle, F. (2021b). The posterior cerebellum supports implicit learning of social belief sequences. Cognitive, Affective, & Behavioral Neuroscience, 21(5), 970–992. https://doi.org/10.3758/s13415-021-00910-z
Metoki, A., Wang, Y., & Olson, I. R. (2021). The Social Cerebellum: A Large-Scale Investigation of Functional and Structural Specificity and Connectivity. Cerebral Cortex, 2019, 1–17. https://doi.org/10.1093/cercor/bhab260
Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 65, 276–291. https://doi.org/10.1016/j.neubiorev.2016.03.020
Molinari, M., & Masciullo, M. (2019). The Implementation of Predictions During Sequencing. Frontiers in Cellular Neuroscience, 13, 1–10. https://doi.org/10.3389/fncel.2019.00439
Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., & Petrosini, L. (1997). Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain, 120(10), 1753–1762. https://doi.org/10.1093/brain/120.10.1753
Molinari, M., Restuccia, D., & Leggio, M. G. (2009). State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum, 8(3), 399–402. https://doi.org/10.1007/s12311-009-0112-x
Nickl-Jockschat, T., Habel, U., Maria Michel, T., Manning, J., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2012). Brain structure anomalies in autism spectrum disorder-a meta-analysis of VBM studies using anatomic likelihood estimation. Human Brain Mapping, 33(6), 1470–1489. https://doi.org/10.1002/hbm.21299
Pisotta, I., & Molinari, M. (2014). Cerebellar contribution to feedforward control of locomotion. Frontiers in Human Neuroscience, 8, 1–5. https://doi.org/10.3389/fnhum.2014.00475
Pu, M., Heleven, E., Delplanque, J., Gibert, N., Ma, Q., Funghi, G., & Van Overwalle, F. (2020). The posterior cerebellum supports the explicit sequence learning linked to trait attribution. Cognitive, Affective and Behavioral Neuroscience, 20(4), 798–815. https://doi.org/10.3758/s13415-020-00803-7
Pu, M., Ma, Q., Heleven, E., Haihambo, N. P., & Van Overwalle, F. (2021). The posterior cerebellum and inconsistent trait implications when learning the sequence of actions. Social Cognitive and Affective Neuroscience, 16(7), 696–706. https://doi.org/10.1093/scan/nsab037
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9–34. https://doi.org/10.1016/j.neubiorev.2014.01.009
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. https://doi.org/10.1162/jocn.2008.21029
Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 8, 1–17. https://doi.org/10.3389/fnsys.2014.00092
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829–858. https://doi.org/10.1002/hbm.20547
Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564–584. https://doi.org/10.1016/j.neuroimage.2009.06.009
Van Overwalle, F., Baetens, K., Mariën, P., & Vandekerckhove, M. (2014). Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. NeuroImage, 86, 554–572. https://doi.org/10.1016/j.neuroimage.2013.09.033
Van Overwalle, F., Baetens, K., Mariën, P., & Vandekerckhove, M. (2015). Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Social Neuroscience, 10(4), 337–344. https://doi.org/10.1080/17470919.2015.1005666
Van Overwalle, F., De Coninck, S., Heleven, E., Perrotta, G., Taib, N. O. B., Manto, M., & Mariën, P. (2019a). The role of the cerebellum in reconstructing social action sequences: A pilot study. Social Cognitive and Affective Neuroscience, 14(5), 549–558. https://doi.org/10.1093/scan/nsz032
Van Overwalle, F., Manto, M., Leggio, M., & Delgado-García, J. M. J. M. (2019b). The sequencing process generated by the cerebellum crucially contributes to social interactions. Medical Hypotheses, 128, 33–42. https://doi.org/10.1016/j.mehy.2019.05.014
Van Overwalle, F., Van de Steen, F., & Mariën, P. (2019c). Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cognitive, Affective and Behavioral Neuroscience, 19(1), 211–223. https://doi.org/10.3758/s13415-018-00659-y
Van Overwalle, F., Ma, Q., & Heleven, E. (2020a). The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences: A meta-Analysis. Social Cognitive and Affective Neuroscience, 15(9), 905–928. https://doi.org/10.1093/scan/nsaa124
Van Overwalle, F., Manto, M., Cattaneo, Z., Clausi, S., Ferrari, C., Gabrieli, J. D. E., & Leggio, M. (2020b). Consensus paper: Cerebellum and social cognition. Cerebellum, 19(6), 833–868. https://doi.org/10.1007/s12311-020-01155-1
Van Overwalle, F., Van de Steen, F., van Dun, K., & Heleven, E. (2020c). Connectivity between the cerebrum and cerebellum during social and non-social sequencing using dynamic causal modelling. NeuroImage, 206, 116326. https://doi.org/10.1016/j.neuroimage.2019.116326
Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happé, F., Falkai, P., & Zilles, K. (2001). Mind reading: Neural mechanisms of theory of mind and self-perspective. NeuroImage, 14(1 I), 170–181. https://doi.org/10.1006/nimg.2001.0789
Walter, H., Adenzato, M., Ciaramidaro, A., Enrici, I., Pia, L., & Bara, B. G. (2004). Understanding intentions in social interaction: The mole of the anterior paracingulate cortex. Journal of Cognitive Neuroscience, 16(10), 1854–1863. https://doi.org/10.1162/0898929042947838
Yu, K. K., Cheung, C., Chua, S. E., & McAlonan, G. M. (2011). Can asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. Journal of Psychiatry and Neuroscience, 36(6), 412–421. https://doi.org/10.1503/jpn.100138