To Do or Not to Do: The cerebellum and neocortex contribute to predicting sequences of social intentions

Springer Science and Business Media LLC - Tập 23 - Trang 323-339 - 2023
Naem Haihambo1, Qianying Ma1, Kris Baetens1,2,3,4, Min Pu1, Natacha Deroost1, Chris Baeken1,2,3,4, Frank van Overwalle1
1Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
2Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
3Department of Psychiatry University Hospital (UZBrussel), Brussels, Belgium
4Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Tóm tắt

Humans read the minds of others to predict their actions and efficiently navigate social environments, a capacity called mentalizing. Accumulating evidence suggests that the cerebellum, especially Crus 1 and 2, and lobule IX are involved in identifying the sequence of others’ actions. In the current study, we investigated the neural correlates that underly predicting others’ intentions and how this plays out in the sequence of their actions. We developed a novel intention prediction task, which required participants to put protagonists’ behaviors in the correct chronological order based on the protagonists’ honest or deceitful intentions (i.e., inducing true or false beliefs in others). We found robust activation of cerebellar lobule IX and key mentalizing areas in the neocortex when participants ordered protagonists’ intentional behaviors compared with not ordering behaviors or to ordering object scenarios. Unlike a previous task that involved prediction based on personality traits that recruited cerebellar Crus 1 and 2, and lobule IX (Haihambo et al., 2021), the present task recruited only the cerebellar lobule IX. These results suggest that cerebellar lobule IX may be generally involved in social action sequence prediction, and that different areas of the cerebellum are specialized for distinct mentalizing functions.

Tài liệu tham khảo

Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45(7), 1363–1377. https://doi.org/10.1016/j.neuropsychologia.2006.10.016 Addis, D. R., Pan, L., Vu, M. A., Laiser, N., & Schacter, D. L. (2009). Constructive episodic simulation of the future and the past: Distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 47(11), 2222–2238. https://doi.org/10.1016/j.neuropsychologia.2008.10.026 Andrews-Hanna, J. R., Saxe, R., & Yarkoni, T. (2014a). Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage, 91, 324–335. https://doi.org/10.1016/j.neuroimage.2014.01.032 Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014b). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29–52. https://doi.org/10.1111/nyas.12360 Atique, B., Erb, M., Gharabaghi, A., Grodd, W., & Anders, S. (2011). Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing. NeuroImage, 55(4), 1899–1911. https://doi.org/10.1016/j.neuroimage.2010.12.036 Baetens, K., Ma, N., Steen, J., & Van Overwalle, F. (2013). Involvement of the mentalizing network in social and non-social high construal. Social Cognitive and Affective Neuroscience, 9(6), 817–824. https://doi.org/10.1093/scan/nst048 Baetens, K., Firouzi, M., Van Overwalle, F., & Deroost, N. (2020). Involvement of the cerebellum in the serial reaction time task (SRT) (Response to Janacsek et al.). NeuroImage, 220, 117114. https://doi.org/10.1016/j.neuroimage.2020.117114 Biro, S., & Leslie, A. M. (2007). Infants’ perception of goal-directed actions: Development through cue-based bootstrapping. Developmental Science, 10(3), 379–398. https://doi.org/10.1111/j.1467-7687.2006.00544.x Brunet, E., Sarfati, Y., Hardy-Baylé, M. C., & Decety, J. (2000). A PET investigation of the attribution of intentions with a nonverbal task. NeuroImage, 11(2), 157–166. https://doi.org/10.1006/nimg.1999.0525 Buckner, R., Krienen, F., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011 Caligiore, D., Arbib, M. A., Miall, R. C., & Baldassarre, G. (2019). The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neuroscience and Biobehavioral Reviews, 100, 19–34. https://doi.org/10.1016/j.neubiorev.2019.02.008 Cauda, F., Geda, E., Sacco, K., D’Agata, F., Duca, S., Geminiani, G., & Keller, R. (2011). Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. Journal of Neurology, Neurosurgery & Psychiatry, 82, 1304–1313. https://doi.org/10.1136/jnnp.2010.239111 Ciaramidaro, A., Adenzato, M., Enrici, I., Erk, S., Pia, L., Bara, B. G., & Walter, H. (2007). The intentional network: How the brain reads varieties of intentions. Neuropsychologia, 45(13), 3105–3113. https://doi.org/10.1016/j.neuropsychologia.2007.05.011 Cusack, R., & Papadakis, N. (2002). New robust 3-D phase unwrapping algorithms: Application to magnetic field mapping and undistorting echoplanar images. NeuroImage, 16(3 I), 754–764. https://doi.org/10.1006/nimg.2002.1092 Den Ouden, H. E. M., Frith, U., Frith, C., & Blakemore, S. J. (2005). Thinking about intentions. NeuroImage, 28(4), 787–796. https://doi.org/10.1016/j.neuroimage.2005.05.001 Duerden, E. G., Mak-Fan, K. M., Taylor, M. J., & Roberts, S. W. (2012). Regional differences in grey and white matter in children and adults with autism spectrum disorders: An activation likelihood estimate (ALE) meta-analysis. Autism Research, 5(1), 49–66. https://doi.org/10.1002/aur.235 Frith, C. D., & Frith, U. (2006). How we predict what other people are going to do. Brain Research, 1079(1), 36–46. https://doi.org/10.1016/j.brainres.2005.12.126 Grèzes, J., Frith, C., & Passingham, R. E. (2004). Brain mechanisms for inferring deceit in the actions of others. Journal of Neuroscience, 24(24), 5500–5505. https://doi.org/10.1523/JNEUROSCI.0219-04.2004 Guell, X., Schmahmann, J. D., Gabrieli, J. D. E., & Ghosh, S. S. (2018). Functional gradients of the cerebellum. ELife, 7(7), e36652. https://doi.org/10.7554/eLife.36652 Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., & Greicius, M. D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29(26), 8586–8594. https://doi.org/10.1523/JNEUROSCI.1868-09.2009 Haihambo, N., Ma, Q., Baeken, C., Deroost, N., Baetens, K., Heleven, E., & Van Overwalle, F. (2021). Social Thinking is for doing: The posterior cerebellum supports prediction of social actions based on personality traits. Social Cognitive and Affective Neuroscience. https://doi.org/10.1093/scan/nsab087 Heleven, E., & Van Overwalle, F. (2019). Neural representations of others in the medial prefrontal cortex do not depend on our knowledge about them. Social Neuroscience, 14(3), 286–299. https://doi.org/10.1080/17470919.2018.1472139 Heleven, E., van Dun, K., & Van Overwalle, F. (2019). The posterior Cerebellum is involved in constructing Social Action Sequences: An fMRI Study. Scientific Reports, 9(1), 11110. https://doi.org/10.1038/s41598-019-46962-7 Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9(4), 304–313. https://doi.org/10.1038/nrn2332 Janacsek, K., Shattuck, K. F., Tagarelli, K. M., Lum, J. A. G., Turkeltaub, P. E., & Ullman, M. T. (2020). Sequence learning in the human brain: A functional neuroanatomical meta-analysis of serial reaction time studies. NeuroImage, 207, 116387. https://doi.org/10.1016/j.neuroimage.2019.116387 King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., & Diedrichsen, J. (2019). Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience, 22(8), 1371–1378. Leggio, M., & Molinari, M. (2015). Cerebellar Sequencing: a Trick for Predicting the Future. Cerebellum, 14(1), 35–38. https://doi.org/10.1007/s12311-014-0616-x Li, M., Ma, Q., Baetens, K., Pu, M., Deroost, N., Baeken, C., & Van Overwalle, F. (2021). Social cerebellum in goal-directed navigation. Social Neuroscience, 16(5), 467–485. https://doi.org/10.1080/17470919.2021.1970017 Ma, Q., Pu, M., Haihambo, N. P., Baetens, K., Heleven, E., Deroost, N., & Van Overwalle, F. (2021a). The posterior cerebellum and temporoparietal junction support explicit learning of social belief sequences. Cognitive, Affective and Behavioral Neuroscience. https://doi.org/10.3758/s13415-021-00966-x Ma, Q., Pu, M., Heleven, E., Haihambo, N. P., Baetens, K., Baeken, C., & Van Overwalle, F. (2021b). The posterior cerebellum supports implicit learning of social belief sequences. Cognitive, Affective, & Behavioral Neuroscience, 21(5), 970–992. https://doi.org/10.3758/s13415-021-00910-z Metoki, A., Wang, Y., & Olson, I. R. (2021). The Social Cerebellum: A Large-Scale Investigation of Functional and Structural Specificity and Connectivity. Cerebral Cortex, 2019, 1–17. https://doi.org/10.1093/cercor/bhab260 Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 65, 276–291. https://doi.org/10.1016/j.neubiorev.2016.03.020 Molinari, M., & Masciullo, M. (2019). The Implementation of Predictions During Sequencing. Frontiers in Cellular Neuroscience, 13, 1–10. https://doi.org/10.3389/fncel.2019.00439 Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., & Petrosini, L. (1997). Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain, 120(10), 1753–1762. https://doi.org/10.1093/brain/120.10.1753 Molinari, M., Restuccia, D., & Leggio, M. G. (2009). State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum, 8(3), 399–402. https://doi.org/10.1007/s12311-009-0112-x Nickl-Jockschat, T., Habel, U., Maria Michel, T., Manning, J., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2012). Brain structure anomalies in autism spectrum disorder-a meta-analysis of VBM studies using anatomic likelihood estimation. Human Brain Mapping, 33(6), 1470–1489. https://doi.org/10.1002/hbm.21299 Pisotta, I., & Molinari, M. (2014). Cerebellar contribution to feedforward control of locomotion. Frontiers in Human Neuroscience, 8, 1–5. https://doi.org/10.3389/fnhum.2014.00475 Pu, M., Heleven, E., Delplanque, J., Gibert, N., Ma, Q., Funghi, G., & Van Overwalle, F. (2020). The posterior cerebellum supports the explicit sequence learning linked to trait attribution. Cognitive, Affective and Behavioral Neuroscience, 20(4), 798–815. https://doi.org/10.3758/s13415-020-00803-7 Pu, M., Ma, Q., Heleven, E., Haihambo, N. P., & Van Overwalle, F. (2021). The posterior cerebellum and inconsistent trait implications when learning the sequence of actions. Social Cognitive and Affective Neuroscience, 16(7), 696–706. https://doi.org/10.1093/scan/nsab037 Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9–34. https://doi.org/10.1016/j.neubiorev.2014.01.009 Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. https://doi.org/10.1162/jocn.2008.21029 Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 8, 1–17. https://doi.org/10.3389/fnsys.2014.00092 Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829–858. https://doi.org/10.1002/hbm.20547 Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564–584. https://doi.org/10.1016/j.neuroimage.2009.06.009 Van Overwalle, F., Baetens, K., Mariën, P., & Vandekerckhove, M. (2014). Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. NeuroImage, 86, 554–572. https://doi.org/10.1016/j.neuroimage.2013.09.033 Van Overwalle, F., Baetens, K., Mariën, P., & Vandekerckhove, M. (2015). Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Social Neuroscience, 10(4), 337–344. https://doi.org/10.1080/17470919.2015.1005666 Van Overwalle, F., De Coninck, S., Heleven, E., Perrotta, G., Taib, N. O. B., Manto, M., & Mariën, P. (2019a). The role of the cerebellum in reconstructing social action sequences: A pilot study. Social Cognitive and Affective Neuroscience, 14(5), 549–558. https://doi.org/10.1093/scan/nsz032 Van Overwalle, F., Manto, M., Leggio, M., & Delgado-García, J. M. J. M. (2019b). The sequencing process generated by the cerebellum crucially contributes to social interactions. Medical Hypotheses, 128, 33–42. https://doi.org/10.1016/j.mehy.2019.05.014 Van Overwalle, F., Van de Steen, F., & Mariën, P. (2019c). Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cognitive, Affective and Behavioral Neuroscience, 19(1), 211–223. https://doi.org/10.3758/s13415-018-00659-y Van Overwalle, F., Ma, Q., & Heleven, E. (2020a). The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences: A meta-Analysis. Social Cognitive and Affective Neuroscience, 15(9), 905–928. https://doi.org/10.1093/scan/nsaa124 Van Overwalle, F., Manto, M., Cattaneo, Z., Clausi, S., Ferrari, C., Gabrieli, J. D. E., & Leggio, M. (2020b). Consensus paper: Cerebellum and social cognition. Cerebellum, 19(6), 833–868. https://doi.org/10.1007/s12311-020-01155-1 Van Overwalle, F., Van de Steen, F., van Dun, K., & Heleven, E. (2020c). Connectivity between the cerebrum and cerebellum during social and non-social sequencing using dynamic causal modelling. NeuroImage, 206, 116326. https://doi.org/10.1016/j.neuroimage.2019.116326 Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happé, F., Falkai, P., & Zilles, K. (2001). Mind reading: Neural mechanisms of theory of mind and self-perspective. NeuroImage, 14(1 I), 170–181. https://doi.org/10.1006/nimg.2001.0789 Walter, H., Adenzato, M., Ciaramidaro, A., Enrici, I., Pia, L., & Bara, B. G. (2004). Understanding intentions in social interaction: The mole of the anterior paracingulate cortex. Journal of Cognitive Neuroscience, 16(10), 1854–1863. https://doi.org/10.1162/0898929042947838 Yu, K. K., Cheung, C., Chua, S. E., & McAlonan, G. M. (2011). Can asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. Journal of Psychiatry and Neuroscience, 36(6), 412–421. https://doi.org/10.1503/jpn.100138