Titanium white modification with silica nanoparticles and formation of structured clusters on vibrating screen

Granular Matter - Tập 22 - Trang 1-10 - 2020
Aleš Slíva1, Robert Brázda1, Aleš Procházka1, Jana Petrů2, Karla Čech Barabaszová3, Gražyna Simha Martynková3,4
1Institute of Transport, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
2Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
3Nanotechnology Centre, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
4IT4Innovations Centre of Excellence, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic

Tóm tắt

The behaviour of titanium white (TiO2) particles with particle size smaller than 45 μm during the modification with nanoparticles (5–50 nm) of hydrophobic silica powder on the vibrating screen and following examination of the newly formed particle clusters is described. Using the vibrating screen aerated in certain places using loudspeaker the subsequent fluidization of the titania particles via simultaneous modification with silica was achieved. The particles of titania are being less cohesively bounded, the van der Walls are weaker and flowability of the system is radically improved. By the targeted fluidization of regions on the screen, was possible to experiment with resulting shapes of particle clusters from the nanoparticles of silica and titanium white in this research. Resulting structure can appear at approximately 2 s of 222.32 Hz excitation using loudspeaker acoustic waves. Methyl groups of hydrophobic nanoparticles of silica can be source for advanced surface applications.

Tài liệu tham khảo

Matsusaka, S., Sato, S., Yasuda, M.: Convection induced by vibrating rod in fine-powder bed. Adv. Powder Technol. 28(10), 2589–2596 (2017) Avcı, A., Eskizeybek, V., Gülce, H.: ZnO–TiO2 nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties. Appl. Phys. A 116, 1119 (2014) Xu, C., Sandali, Y., Sun, G., Zheng, N., Shi, Q.: Segregation patterns in binary granular mixtures with same layer-thickness under vertical vibration. Powder Technol. 322, 92–95 (2017) Wu, Y., An, X., Yu, A.B.: DEM simulation of cubical particle packing under mechanical vibration. Powder Technol. 314, 89–101 (2017) Nur, H.: Modification of titanium surface species of titania by attachment of silica nanoparticles. Mat. Sci. Eng. B 133(1–3), 49–54 (2006) Dahoudi, N.A., Xia, J., Cao, G.: Silica modification of titania nanoparticles for a dye-sensitized solar cell. Electrochim. Acta 59, 32–38 (2012) Zeleňák, V., Hornebecq, V., Mornet, S., Schäf, O., Llewellyn, P.: Mesoporous silica modified with titania structure and thermal. Chem. Mater. 18(14), 3184–3191 (2006) Godlisten, N.S., Rizwan, S., Askwar, H.J., Eun, L.Y., Ho, P.H., Taik, K.: Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. Chem. Eng. J. 215–216, 600–607 (2013) Zhe-Ying, S.L., Yu, L.Y., Lib, Ch., Chun, W.: Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO2/TiO2 core/shell microspheres as high performance photocatalyst for dye degradation. J. Colloid Interf. Sci. 354(1), 196–201 (2011) Burtally, N., King, P.J., Michael, R., Swift, M.R.: Spontaneous air-driven separation in vertically vibrated fine granular mixtures. Science 295(5561), 1877–1879 (2002) Knight, J.B., Jaeger, H.M., Sidney, R., Nagel, S.R.: Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70, 3728 (1993) Medved, M., Jaeger, H.M., Nagel, S.R.: Modes of response in horizontally vibrated granular matter. EPL (Europhys. Lett.) 52(1), 66 (2000) Rosato, A.D., Blackmore, D.L., Zhang, N., Lan, Y.: A perspective on vibration-induced size segregation of granular materials. Chem. Eng. Sci. 57, 265–275 (2002) Clement, E., Vanel, L., Rajchenbach, J., Duran, J.: Pattern formation in a vibrated granular later. Phys. Rev. E 53(3), 2972–2975 (1996) Knight, J.B., Frandrich, C.G., Lau, C.N., Jaeger, H.M., Nagel, S.R.: Density relaxation in a vibrated granular materials. Phys. Rev. E 51, 3957–3963 (1995) Lim, M.X., Souslov, A., Vitelli, V.: Cluster formation by acoustic forces and active fluctuations in levitated granular matter. Nat. Phys. 15, 460–464 (2019) Thomas, B., Mason, M.O., Squires, A.M.: Some behaviors of shallow vibrated beds across a wide range in particle size and their implications for powder classification. Powder Technol. 111, 34–49 (2000) Sliva, A., Brazda, R., Zegzulka, J., Dvorsky, R., Lunacek, J.: Particle characterization of nanoparticle materials in water jet mill device. J. Sci. Confer. Proceed. 2(1), 45–48 (2010) Sliva, A., Samolejova, A., Brazda, R., Zegzulka, J., Polak, J.: Optical parameter adjustment for silica nano-and micro-particle size distribution measurement using Mastersizer 2000. In: Proc. SPIE 5445, Microwave and Optical Technology 2003, pp. 160–163 (2003) Product List, www.evonik.com, https://www.aerosil.com/product/aerosil/en/ Accessed 22 January, 2020 Ku, N., Hare, C., Ghadiri, M., Murtagh, M., Oram, P., Haber, R.A.: Auto-granulation of fine cohesive powder by mechanical vibration. Procedia Eng. 102, 72–80 (2015) Zhou, L., Wang, H., Zhou, T., Li, K., Kage, H., Mawatari, Y.: Model of estimating nano-particle agglomerate sizes in a vibro-fluidized bed. Adv. Powder Technol. 24, 311–316 (2013) Raganati, F., Chirone, R., Ammendola, P.: Gas–solid fluidization of cohesive powders. Chem. Eng. Res. Des. 133, 346–387 (2018) Vivacqua, V., Ghadari, M.: Modelling of auto-agglomeration of cohesive powders. Chem. Eng. Res. Des. 133, 137–141 (2018) Ali, S.S., Al-Ghurabi, E.H., Imbrahim, A.A., Asif, M.: Effect of adding Geldart group A particles on the collapse of fluidized bed of hydrophilic nanoparticles. Powder Technol. 330, 50–57 (2018) Králová, M., Dzik, P., Kašpárek, V., Veselý, M., Cihlář, J.: Cold-setting inkjet printed titania patterns reinforced by organosilicate binder. Molecules 20(9), 16582–16603 (2015) Barletta, D., Poletto, M.: Aggregation phenomena in fluidization of cohesive powders assisted by mechanical vibrations. Powder Technol. 225, 93–100 (2012) Chen, Y., Yang, J., Dave, R.N., Pfeffer, R.: Granulation of cohesive Geldart group C powders in a Mini-Glatt fluidized bed by pre-coating with nanoparticles. Powder Technol. 191(1–2), 206–217 (2009) Cuko, A., Calatayud, M., Bromley, S.T.: Stability of mixed-oxide titanosilicates: dependency on size and composition from nanocluster to bulk. Nanoscale 10, 832–842 (2018) Dzik, P., Veselý, M., Pachovská, M., Neumann-Spallart, M., Buršíková, V., Homola, T.: The influence of curing methods on the physico-chemical properties of printed mesoporous titania patterns reinforced by methylsilica binder. Catal. Today 313, 26–32 (2018) Dvorsky, R., Lunacek, J., Sliva, A., Sancer, J.: Preparation of silicon nanoparticular nanocomposite with thin interparticular tin matrix. J. Nanosci. Nanotechnol. 11(10), 9065–9071 (2011) Bakar, N.F.A., Anzai, R.H.: Microscopic evaluation of binderless granulation in a pressure swing granulation fluidized bed. Chem. Eng. Sci. 98(19), 51–58 (2013) Cherntongchai, P., Chaiwattana, S., Leruk, R.: Bed expansion characteristics in sound assisted fluidization of Geldart’s group A powder. Powder Technol. 340, 243–252 (2018) Sliva, A., Brazda, R., Prochazka, A., Martynkova, G.S., Barabaszova, K.C.: Investigation of geometric properties of modified titanium white by fluidisation for use in the process of transport, handling, processing and storage. J. Nanosci. Nanotechnol. 19(5), 2997–3001 (2019) Jarray, A., Shi, H., Scheper, B.J., Habibi, M., Luding, S.: Cohesion-driven mixing and segregation of dry granular media. Sci. Rep. 9(1), 1–12 (2019) Cabiscol, R., Finke, J.H., Kwade, A.: Assessment of particle rearrangement and anisotropy in high-load tableting with a DEM-based elasto-plastic cohesive model. Granul. Matter 21, 98 (2019) Horio, M.: Binderless granulation—its potential, achievements and future issues. Powder Technol. 130, 1–7 (2003) Yang, J., Sliva, A., Banerjee, A., Dave, R.N., Pfeffer, R.: Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 158(1–3), 21–33 (2005) Sliva, A., Brazda, R., Prochazka, A., Martynkova, G.S., Barabaszova, K.C.: Study of the optimum arrangement of spherical particles in containers having different cross section shapes. J. Nanosci. Nanotechnol. 19(5), 2717–2722 (2019) Prochazka, A.: Fluidization Research in Transport and Storage systems. Dissertation Thesis, Ostrava (2015) (in Czech)