Titanium–tantalum oxide as a support for Pd nanoparticles for the oxygen reduction reaction in alkaline electrolytes

Cinthia Alegre1,2, Stefania Siracusano1, Esterina Modica1, Antonino S. Aricò1, Vincenzo Baglio1
1Istituto di Tecnologie Avanzate per l’Energia, Nicola Giordano, CNR-ITAE, Messina, Italy
2Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, LIFTEC, CSIC-University of Zaragoza, Saragossa, Spain

Tóm tắt

We report a facile synthetic method for the preparation of titanium–tantalum oxide by means of a modified Adam’s method. This new method allowed obtaining Ti0.8Ta0.2O2 with a high surface area (234 m2 g−1), to be used as catalyst support for Pd nanoparticles. Cyclic voltammetry and linear sweep voltammetry measurements confirm the noticeable oxygen reduction reaction (ORR) activities of the Pd/Ti0.8Ta0.2O2 electrocatalyst in alkaline electrolytes, along with a high-selectivity towards a 4e− pathway. The good ORR performance for the Pd/Ti0.8Ta0.2O2 could arise from both the strong metal-support interaction and the contribution of the Ti0.8Ta0.2O2 in facilitating the ORR process, acting as co-catalyst. However, the stability of this catalyst seems insufficient for practical applications.

Tài liệu tham khảo

Neburchilov, V., Wang, H., Martin, J.J., Qu, W.: A review on air cathodes for zinc–air fuel cells. J. Power Sources 195, 1271–1291 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.100 Dresp, S., Luo, F., Schmack, R., Kühl, S., Gliech, M., Strasser, P.: An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci. 9, 2020–2024 (2016). https://doi.org/10.1039/C6EE01046F Narayan, S.R., Manohar, A.K., Mukerjee, S.: Bi-Functional Oxygen Electrodes—Challenges and Prospects. Electrochem. Soc. Interface. Summer 24, 65–69 (2015) Jörissen, L.: Bifunctional oxygen/air electrodes. J. Power Sources 155, 23–32 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.038 Caramia, V., Bozzini, B.: Materials science aspects of zinc-air batteries: a review. Mater. Renew. Sustain. Energy 3, 28 (2014). https://doi.org/10.1007/s40243-014-0028-3 Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T.: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021 Van Der Vliet, D., Wang, C., Debe, M., Atanasoski, R., Markovic, N.M., Stamenkovic, V.R.: Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. Electrochim. Acta 56, 8695–8699 (2011). https://doi.org/10.1016/j.electacta.2011.07.063 Wang, Y., Leung, D.Y.C., Xuan, J., Wang, H.: A review on unitized regenerative fuel cell technologies, part-A: unitized regenerative proton exchange membrane fuel cells. Renew. Sustain. Energy Rev. 65, 961–977 (2016). https://doi.org/10.1016/j.rser.2016.07.046 Mani, P., Srivastava, R., Strasser, P.: Dealloyed binary PtM3 (M = Cu Co, Ni) and ternary PtNi3 M (M = Cu Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J. Power Sources 196, 666–673 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.047 Sebastián, D., Serov, A., Artyushkova, K., Gordon, J., Atanassov, P., Aricò, A.S., Baglio, V.: High performance and cost-effective direct methanol fuel cells: Fe-N-C methanol-tolerant oxygen reduction reaction catalysts. Chemsuschem 9, 1986–1995 (2016). https://doi.org/10.1002/cssc.201600583 Bashyam, R., Zelenay, P.: A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006). https://doi.org/10.1038/nature05118 Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J., Heller, A., Hui, S.Q., Zhang, J.J., Ota, K., Campbell, S.A., Dahn, J.R., Olson, T., Pylypenko, S., Atanassov, P., Ustinov, E.A.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167 (2011). https://doi.org/10.1039/c0ee00558d Karim, N.A., Kamarudin, S.K.: An overview on non-platinum cathode catalysts for direct methanol fuel cell. Appl. Energy 103, 212–220 (2013). https://doi.org/10.1016/j.apenergy.2012.09.031 McKerracher, R., Alegre, C., Baglio, V., Aricò, A.S., Ponce de León, C., Mornaghini, F., Rodlert, M., Walsh, F.C.: A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries. Electrochim. Acta 174, 508–515 (2015). https://doi.org/10.1016/j.electacta.2015.06.001 Miller, H.A., Lavacchi, A., Vizza, F., Marelli, M., Di Benedetto, F., D’Acapito, F., Paska, Y., Page, M., Dekel, D.R.: A Pd/C-CeO 2 Anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew. Chemie Int. Ed. 55, 6004–6007 (2016). https://doi.org/10.1002/anie.201600647 Félix-Navarro, R.M., Beltrán-Gastélum, M., Reynoso-Soto, E.A., Paraguay-Delgado, F., Alonso-Nuñez, G., Flores-Hernández, J.R.: Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renew. Energy. 87, 31–41 (2016). https://doi.org/10.1016/j.renene.2015.09.060 Macak, J.M., Schmidt-Stein, F., Schmuki, P.: Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem. Commun. 9, 1783–1787 (2007). https://doi.org/10.1016/j.elecom.2007.04.002 Shao, M.: Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 196, 2433–2444 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.093 Lo Vecchio, C., Alegre, C., Sebastián, D., Stassi, A., Aricò, A.S., Baglio, V.: Investigation of supported Pd-based electrocatalysts for the oxygen reduction reaction: performance. Mater. (Basel). 8, 7997–8008 (2015). https://doi.org/10.3390/ma8125438 Abo Zeid, E.F., Ibrahem, I.A.: Preparation, characterization and electrocatalytic activity for oxygen reduction reaction in PEMFCs of bimetallic PdNi nanoalloy. Mater. Renew. Sustain. Energy 6, 19 (2017). https://doi.org/10.1007/s40243-017-0103-7 Hong, W.T., Risch, M., Stoerzinger, K.A., Grimaud, A., Suntivich, J., Shao-Horn, Y.: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015). https://doi.org/10.1039/C4EE03869J Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J.-P., Wu, G., Chung, H.T., Johnston, C.M., Zelenay, P.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells. Energy Environ. Sci. 4, 114–130 (2011). https://doi.org/10.1039/C0EE00011F Cao, R., Lee, J.-S.S., Liu, M., Cho, J.: Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2, 816–829 (2012). https://doi.org/10.1002/aenm.201200013 Alegre, C., Busacca, C., Di Blasi, O., Antonucci, V., Aricò, A.S., Di Blasi, A., Baglio, V.: A combination of CoO and Co nanoparticles supported on electrospun carbon nanofibers as highly stable air electrodes. J. Power Sources 364, 101–109 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.007 Antolini, E.: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B Environ. 88, 1–24 (2009). https://doi.org/10.1016/j.apcatb.2008.09.030 García, G., Roca-Ayats, M., Lillo, A., Galante, J.L., Peña, M.A., Martínez-Huerta, M.V.: Catalyst support effects at the oxygen electrode of unitized regenerative fuel cells. Catal. Today 210, 67–74 (2013). https://doi.org/10.1016/j.cattod.2013.02.003 S. L. Suib, F. Maillard, N. Job, M. Chatenet, Chapter 14—Approaches to Synthesize Carbon-Supported Platinum-Based Electrocatalysts for Proton-Exchange Membrane Fuel Cells, New Futur. Dev. Catal., 2013: pp. 407–428. https://doi.org/10.1016/b978-0-444-53880-2.00019-3 S.L. Suib, F. Maillard, N. Job, M. Chatenet, Chapter 17 – Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles, in: New Futur. Dev. Catal., 2013: pp. 401–423. https://doi.org/10.1016/b978-0-444-53874-1.00018-4 Maass, S., Finsterwalder, F., Frank, G., Hartmann, R., Merten, C.: Carbon support oxidation in PEM fuel cell cathodes. J. Power Sources 176, 444–451 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.053 Castanheira, L., Dubau, L., Mermoux, M., Berthomé, G., Caqué, N., Rossinot, E., Chatenet, M., Maillard, F.: Carbon corrosion in proton-exchange membrane fuel cells: from model experiments to real-life operation in membrane electrode assemblies. ACS Catal. 4, 2258–2267 (2014). https://doi.org/10.1021/cs500449q Cabello, G., Davoglio, R.A., Pereira, E.C.: Microwave-assisted synthesis of anatase-TiO2 nanoparticles with catalytic activity in oxygen reduction. J. Electroanal. Chem. 794, 36–42 (2017). https://doi.org/10.1016/j.jelechem.2017.04.004 Mentus, S.V.: Oxygen reduction on anodically formed titanium dioxide. Electrochim. Acta 50, 27–32 (2004). https://doi.org/10.1016/j.electacta.2004.07.009 Sacco, A., Garino, N., Lamberti, A., Pirri, C.F., Quaglio, M.: Anodically-grown TiO2 nanotubes: effect of the crystallization on the catalytic activity toward the oxygen reduction reaction. Appl. Surf. Sci. 412, 447–454 (2017). https://doi.org/10.1016/j.apsusc.2017.03.224 Wang, Y.-J., Wilkinson, D.P., Neburchilov, V., Song, C., Guest, A., Zhang, J.: Ta and Nb co-doped TiO2 and its carbon-hybrid materials for supporting Pt–Pd alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. J. Mater. Chem. A. 2, 12681 (2014). https://doi.org/10.1039/C4TA02062F Lv, H., Zhang, G., Hao, C., Mi, C., Zhou, W., Yang, D., Li, B., Zhang, C.: activity of IrO 2 supported on tantalum-doped TiO2 electrocatalyst for solid polymer electrolyte water electrolyzer. RSC Adv. 7, 40427–40436 (2017). https://doi.org/10.1039/C7RA06534E Beauger, C., Testut, L., Berthon-Fabry, S., Georgi, F., Guetaz, L.: Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: a comparative study of Nb, v and Ta dopants. Microporous Mesoporous Mater. 232, 109–118 (2016). https://doi.org/10.1016/j.micromeso.2016.06.003 Stodolny, M., Laniecki, M.: Synthesis and characterization of mesoporous Ta2O5-TiO2 photocatalysts for water splitting. Catal. Today 142, 314–319 (2009). https://doi.org/10.1016/j.cattod.2008.07.034 Siracusano, S., Baglio, V., D’Urso, C., Antonucci, V., Aricò, A.S.: Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochim. Acta 54, 6292–6299 (2009). https://doi.org/10.1016/j.electacta.2009.05.094 C. Hao, H. Lv, B. Li, H. Xin, J. Ma, Investigation of mesoporous vanadium doped TiO2 support for anode catalyst of SPE electrolyzer, Taiyangneng Xuebao/Acta Energiae Solaris Sin. 34 (2013) 1464–1470. http://www.scopus.com/inward/record.url?eid=2-s2.0-84886859703&partnerID=tZOtx3y1 Cavaliere, S., Subianto, S., Savych, I., Jones, D.J., Rozière, J.: Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4, 4761 (2011). https://doi.org/10.1039/c1ee02201f Stassi, A., Gatto, I., Baglio, V., Passalacqua, E., Aricò, A.S.: Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells. Appl. Catal. B Environ. 142–143, 15–24 (2013). https://doi.org/10.1016/j.apcatb.2013.05.008 Siracusano, S., Stassi, A., Modica, E., Baglio, V., Aricò, A.S.S.: Preparation and characterisation of Ti oxide based catalyst supports for low temperature fuel cells. Int. J. Hydrogen Energy 38, 11600–11608 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.161 McKerracher, R.D., Figueredo-Rodríguez, H.A., Ponce de León, C., Alegre, C., Baglio, V., Aricò, A.S., Walsh, F.C.: A high-performance, bifunctional oxygen electrode catalysed with palladium and nickel–iron hexacyanoferrate. Electrochim. Acta 206, 127–133 (2016). https://doi.org/10.1016/j.electacta.2016.04.090 Alegre, C., Modica, E., Lo Vecchio, C., Sebastián, D., Lázaro, M.J., Aricò, A.S., Baglio, V.: Carbon nanofibers as advanced Pd catalyst supports for the air electrode of alkaline metal-air batteries. Chempluschem. 80, 1384–1388 (2015). https://doi.org/10.1002/cplu.201500120 Alegre, C., Modica, E., Lo Vecchio, C., Siracusano, S., Aricò, A.S., Baglio, V.: Pd supported on Ti-suboxides as bifunctional catalyst for air electrodes of metal-air batteries. Int. J. Hydrogen Energy 41, 19579–19586 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.095 Marshall, A., Børresen, B., Hagen, G., Tsypkin, M., Tunold, R.: Preparation and characterisation of nanocrystalline IrxSn1 − xO2 electrocatalytic powders. Mater. Chem. Phys. 94, 226–232 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.039 Siracusano, S., Van Dijk, N., Payne-Johnson, E., Baglio, V., Aricò, A.S.: Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Appl. Catal. B Environ. 164, 488–495 (2015). https://doi.org/10.1016/j.apcatb.2014.09.005 Sing, K.S.W.: Reporting physisorption data for gas, solid systems with special reference to the determination of surface area and porosity (Recommendations,1984). Pure Appl. Chem. 57, 603–619 (1985). https://doi.org/10.1351/pac198557040603 Rivera Gavidia, L., Sebastián, D., Pastor, E., Aricò, A., Baglio, V.: Carbon-supported Pd and PdFe alloy catalysts for direct methanol fuel cell cathodes. Materials (Basel). 10, 580 (2017). https://doi.org/10.3390/ma10060580 Bauer, A., Chevallier, L., Hui, R., Cavaliere, S., Zhang, J., Jones, D., Rozière, J.: Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. Electrochim. Acta 77, 1–7 (2012). https://doi.org/10.1016/J.ELECTACTA.2012.04.028 Huang, D., Zhang, B., Bai, J., Zhang, Y., Wittstock, G., Wang, M., Shen, Y.: Pt catalyst supported within TiO2 mesoporous films for oxygen reduction reaction. Electrochim. Acta 130, 97–103 (2014). https://doi.org/10.1016/J.ELECTACTA.2014.02.115 Kim, J.-H., Ishihara, A., Mitsushima, S., Kamiya, N., Ota, K.-I.: Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim. Acta 52, 2492–2497 (2007). https://doi.org/10.1016/j.electacta.2006.08.059 Chanmanee, W., de Tacconi, N.R., Rajeshwar, K., Lin, W.-Y., Nikiel, L., Wampler, W.A.: Photocatalytically generated trimetallic (Pt-Pd-Au/C-TiO2) nanocomposite electrocatalyst. J. Electrochem. Soc. 159, F226–F233 (2012). https://doi.org/10.1149/2.038207jes Tammeveski, K., Tenno, T., Rosental, A., Talonen, P., Johansson, L.-S., Niinistö, L.: The reduction of oxygen on Pt-TiO[sub 2] coated Ti electrodes in alkaline solution. J. Electrochem. Soc. 146, 669 (1999). https://doi.org/10.1149/1.1391660 Tiido, K., Alexeyeva, N., Couillard, M., Bock, C., MacDougall, B.R., Tammeveski, K.: Graphene–TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction. Electrochim. Acta 107, 509–517 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.05.155 Jukk, K., Kozlova, J., Ritslaid, P., Sammelselg, V., Alexeyeva, N., Tammeveski, K.: Sputter-deposited Pt nanoparticle/multi-walled carbon nanotube composite catalyst for oxygen reduction reaction. J. Electroanal. Chem. 708, 31–38 (2013). https://doi.org/10.1016/J.JELECHEM.2013.09.009 Pei, D.-N., Gong, L., Zhang, A.-Y., Zhang, X., Chen, J.-J., Mu, Y., Yu, H.-Q.: Defective titanium dioxide single crystals exposed by high-energy 001 facets for efficient oxygen reduction. Nat. Commun. 6, 8696 (2015). https://doi.org/10.1038/ncomms9696 Liu, S., Yu, J., Jaroniec, M.: Anatase TiO2 with dominant high-energy 001 facets: synthesis, properties, and applications. Chem. Mater. 23, 4085–4093 (2011). https://doi.org/10.1021/cm200597m A. Więckowski, Interfacial electrochemistry : theory, experiment, and applications, Marcel Dekker, 1999 Park, K.-W., Seol, K.-S.: Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem. Commun. 9, 2256–2260 (2007). https://doi.org/10.1016/j.elecom.2007.06.027 Castegnaro, M.V., Paschoalino, W.J., Fernandes, M.R., Balke, B., Alves, M.C.M., Ticianelli, E.A., Morais, J.: Pd–M/C (M = Pd, Cu, Pt) Electrocatalysts for Oxygen reduction reaction in alkaline medium: correlating the electronic structure with activity. Langmuir 33, 2734–2743 (2017). https://doi.org/10.1021/acs.langmuir.7b00098 Dumitru, A., Mamlouk, M., Scott, K.: Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media. Electrochim. Acta 135, 428–438 (2014). https://doi.org/10.1016/j.electacta.2014.04.123