Các hạt nano dioxide titani (TiO2) gây stress oxy hóa và tạo thành DNA-adduct nhưng không làm đứt DNA trong các tế bào phổi người

Kunal Bhattacharya1, Maria Davoren2, Jens Boertz3, Roel P. F. Schins4, Eik Hoffmann5, Elke Dopp1
1Institut für Hygiene und Arbeitsmedizin, Universität Duisburg-Essen, Germany
2Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
3Institut für Umweltanalytik, Universität Duisburg-Essen, Essen, Germany
4Institut für Umweltmedizinische Forschung (IUF) an der Heinrich-Heine University, Düsseldorf, Germany
5European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

Tóm tắt

Tóm tắt

Dioxide titani (TiO2), còn được biết đến với tên gọi oxide titani (IV) hay anatase, là oxide tự nhiên của titani. Đây cũng là một trong những dạng được sử dụng rộng rãi nhất trong thương mại. Đến nay, không có thông số nào được thiết lập cho nồng độ trung bình của các hạt nano TiO2 trong không khí. Các nghiên cứu trước đây đã xác định rằng các hạt nano này chủ yếu không có độc tính tế bào và nhiễm sắc thể, mặc dù chúng đã được phát hiện tạo ra các gốc tự do cả trong môi trường ngoài tế bào (đặc biệt thông qua hoạt động quang xúc tác) và bên trong tế bào. Nghiên cứu hiện tại xác định vai trò của hạt nano TiO2 (anatase, ∅ < 100 nm) bằng cách sử dụng một số thông số như độc tính tế bào và độc tính di truyền, sự hình thành DNA-adduct và sự tạo ra các gốc tự do sau khi hạt được hấp thụ bởi các tế bào phổi người in vitro. Để so sánh, các hạt nano chứa sắt (hematite, Fe2O3, ∅ < 100 nm) cũng được sử dụng. Kết quả của nghiên cứu này cho thấy cả hai loại hạt nano đều nằm trong dịch tế bào gần nhân. Không có hạt nào được tìm thấy bên trong nhân, trong ty thể hoặc ribosome. Tế bào xơ phổi người (IMR-90) nhạy cảm hơn về các tác động độc tính tế bào và di truyền do hạt nano gây ra so với tế bào biểu mô phế quản người (BEAS-2B). Trái ngược với hạt nano hematite, hạt nano TiO2 không gây đứt DNA được đo bằng phương pháp Comet-assay ở cả hai loại tế bào. Sự tạo ra các loài oxy phản ứng (ROS) được đo cả trong và ngoài tế bào cho cả hai loại hạt, tuy nhiên, các hạt nano chứa sắt cần các điều kiện khử đặc biệt trước khi tạo ra gốc tự do một cách rõ rệt. Mức độ hình thành DNA adduct cao (8-OHdG) đã được quan sát thấy ở các tế bào IMR-90 tiếp xúc với hạt nano TiO2, nhưng không thấy ở các tế bào tiếp xúc với hạt nano hematite. Nghiên cứu của chúng tôi chỉ ra các cơ chế tác động khác nhau đối với hạt nano TiO2 và Fe2O3. Trong khi hạt nano TiO2 có khả năng tạo ra nhiều gốc tự do cao, dẫn đến độc tính di truyền gián tiếp chủ yếu do hình thành DNA-adduct, hạt nano Fe2O3 có tính chất làm đứt nhiễm sắc thể (gây ra đứt DNA) và cần các điều kiện khử để hình thành gốc tự do.

Từ khóa


Tài liệu tham khảo

American Conference of Governmental industrial hygienists: TLVs. Threshold limit values and biological exposure indices for 1992 – 1993. Cincinnati, OH 1992.

Hext PM, Tomenson JA, Thompson P: Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 2005, 49: 461–472. 10.1093/annhyg/mei012

Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann , Krutmann J, Warheit D, Oberdorster E: The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 2006, 3: 11. 10.1186/1743-8977-3-11

Kumar A, Sahoo B, Montpetit A, Behera S, Lockey RF, Mohapatra SS: Development of hyaluronic acid-Fe 2 O 3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine. 2007,3(2):132–137.

Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000,18(4):410–414. 10.1038/74464

Das B, Khatoon N, Srivastava RC, Viswanathan PN, Rahman Q: Biochemical studies on the toxicity of hematite dust. Environ Res 1983,32(2):372–81. 10.1016/0013-9351(83)90119-6

Stone V, Johnston H, Clift MJ: Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience 2007,6(4):331–40. 10.1109/TNB.2007.909005

de la Garza L, Saponjic ZV, Dimitrijevic NM, Thurnauer MC, Rajh T: Surface states of titanium dioxide nanoparticles modified with enediol ligands. J Phys Chem B 2006, 110: 680–686. 10.1021/jp054128k

Wang Y, Wang X, Luo G, Dai Y: Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresour Technol 2008,99(9):3881–4. 10.1016/j.biortech.2007.08.017

Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J: Molecular Cell Biology. Edited by: Bentley D, Toroian-Raymond A. W.H. Freeman and Company; 1986:821–823.

Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A: Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 2007,104(28):11633–8. 10.1073/pnas.0702449104

Stearns RC, Paulauskis JD, Godleski JJ: Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001,24(2):108–115.

Park EJ, Choi J, Park YK, Park K: Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008,245(1–2):90–100. 10.1016/j.tox.2007.12.022

Chen M, von Mikecz A: Formation of nucleoplasmic protein agglomerates impairs nuclear function in response to SiO 2 nanoparticles. Exp Cell Res 2005,305(1):51–62. 10.1016/j.yexcr.2004.12.021

Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A: Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003,111(4):455–460.

Bhattacharya K, Cramer H, Albrecht C, Schins R, Rahman Q, Zimmermann U, Dopp E: Vanadium pentoxide-coated ultrafine titanium dioxide particles induce cellular damage and micronucleus formation in V79 cells. J Toxicol Environ Health A 2008, 71: 976–980. 10.1080/15287390801989218

Turkez H, Geyikoglu F: An in vitro blood culture for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant enzymes. Toxicol Ind Health 2007, 23: 19–23. 10.1177/0748233707076764

Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L: Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 2008, 4: 226–236.

Garry S, Nesslany F, Aliouat EM, Haguenoer JM, Marzin D: Potent genotoxic activity of benzo[a]pyrene coated onto hematite measured by unscheduled DNA synthesis in vivo in the rat. Mutagen 2003,18(5):449–455. 10.1093/mutage/geg016

Garry S, Nesslany F, Aliouat E, Haguenoer JM, Marzin D: Hematite (Fe 2 O 3 ) acts by oxidative stress and potentiates benzo[a]pyrene genotoxicity. Mutat Res 2004,563(2):117–129.

Bhattacharya K: Comparative analysis of fine and nanoparticles for cellular uptake, oxidative stress and genomic damage in human lung cells. PhD thesis. University of Duisburg-Essen, Germany; 2008.

Braydich-Stolle LK, Murdock RC, Szczublewski K, Schlager JJ, Jiang J, Biswas P, Hussain SM: The effect of titanium dioxide nanoparticles on mouse keratinocytes (HEL-30 cells). International Congress of Nanobiotechnology & Nanomedicine. San Francisco; USA 2007.

He YT, Wan J, Tokunga T: Kinetic stability of hematite nanoparticles: the effect of particle. J Nanop Res 2008,10(2):321–332. 10.1007/s11051-007-9255-1

Gurr JR, Wang AS, Chen CH, Jan KY: Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005,213(1–2):66–73. 10.1016/j.tox.2005.05.007

Kang SJ, Kim BM, Lee YJ, Chung HW: Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 2008, 49: 399–405. 10.1002/em.20399

Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G: Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 2003,31(18):5377–88. 10.1093/nar/gkg728

Pyenson H, Tracy PH: A 1,10 Phenanthroline method for the determination of iron in powdered milk. J of Dairy Sci 1945,28(5):401–412.

Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G: DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 2005,65(10):4020–4030. 10.1158/0008-5472.CAN-04-3055

Yamamoto F, Kasai H, Bessho T, Chung MH, Inoue H, Ohtsuka E, Hori T, Nishimura S: Ubiquitous presence in mammalian cells of enzymatic activity specifically cleaving 8-hydroxyguanine-containing DNA. Jpn J Cancer Res 1992, 83: 351–357.

Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN: DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci USA 1998,95(1):288–293. 10.1073/pnas.95.1.288