Các hạt nano dioxide titani (TiO2) gây stress oxy hóa và tạo thành DNA-adduct nhưng không làm đứt DNA trong các tế bào phổi người
Tóm tắt
Dioxide titani (TiO2), còn được biết đến với tên gọi oxide titani (IV) hay anatase, là oxide tự nhiên của titani. Đây cũng là một trong những dạng được sử dụng rộng rãi nhất trong thương mại. Đến nay, không có thông số nào được thiết lập cho nồng độ trung bình của các hạt nano TiO2 trong không khí. Các nghiên cứu trước đây đã xác định rằng các hạt nano này chủ yếu không có độc tính tế bào và nhiễm sắc thể, mặc dù chúng đã được phát hiện tạo ra các gốc tự do cả trong môi trường ngoài tế bào (đặc biệt thông qua hoạt động quang xúc tác) và bên trong tế bào. Nghiên cứu hiện tại xác định vai trò của hạt nano TiO2 (anatase, ∅ < 100 nm) bằng cách sử dụng một số thông số như độc tính tế bào và độc tính di truyền, sự hình thành DNA-adduct và sự tạo ra các gốc tự do sau khi hạt được hấp thụ bởi các tế bào phổi người
Từ khóa
Tài liệu tham khảo
American Conference of Governmental industrial hygienists: TLVs. Threshold limit values and biological exposure indices for 1992 – 1993. Cincinnati, OH 1992.
Hext PM, Tomenson JA, Thompson P: Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 2005, 49: 461–472. 10.1093/annhyg/mei012
Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann , Krutmann J, Warheit D, Oberdorster E: The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 2006, 3: 11. 10.1186/1743-8977-3-11
Kumar A, Sahoo B, Montpetit A, Behera S, Lockey RF, Mohapatra SS: Development of hyaluronic acid-Fe 2 O 3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine. 2007,3(2):132–137.
Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000,18(4):410–414. 10.1038/74464
Das B, Khatoon N, Srivastava RC, Viswanathan PN, Rahman Q: Biochemical studies on the toxicity of hematite dust. Environ Res 1983,32(2):372–81. 10.1016/0013-9351(83)90119-6
Stone V, Johnston H, Clift MJ: Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience 2007,6(4):331–40. 10.1109/TNB.2007.909005
de la Garza L, Saponjic ZV, Dimitrijevic NM, Thurnauer MC, Rajh T: Surface states of titanium dioxide nanoparticles modified with enediol ligands. J Phys Chem B 2006, 110: 680–686. 10.1021/jp054128k
Wang Y, Wang X, Luo G, Dai Y: Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresour Technol 2008,99(9):3881–4. 10.1016/j.biortech.2007.08.017
Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J: Molecular Cell Biology. Edited by: Bentley D, Toroian-Raymond A. W.H. Freeman and Company; 1986:821–823.
Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A: Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 2007,104(28):11633–8. 10.1073/pnas.0702449104
Stearns RC, Paulauskis JD, Godleski JJ: Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001,24(2):108–115.
Park EJ, Choi J, Park YK, Park K: Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008,245(1–2):90–100. 10.1016/j.tox.2007.12.022
Chen M, von Mikecz A: Formation of nucleoplasmic protein agglomerates impairs nuclear function in response to SiO 2 nanoparticles. Exp Cell Res 2005,305(1):51–62. 10.1016/j.yexcr.2004.12.021
Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A: Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003,111(4):455–460.
Bhattacharya K, Cramer H, Albrecht C, Schins R, Rahman Q, Zimmermann U, Dopp E: Vanadium pentoxide-coated ultrafine titanium dioxide particles induce cellular damage and micronucleus formation in V79 cells. J Toxicol Environ Health A 2008, 71: 976–980. 10.1080/15287390801989218
Turkez H, Geyikoglu F: An in vitro blood culture for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant enzymes. Toxicol Ind Health 2007, 23: 19–23. 10.1177/0748233707076764
Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L: Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 2008, 4: 226–236.
Garry S, Nesslany F, Aliouat EM, Haguenoer JM, Marzin D: Potent genotoxic activity of benzo[a]pyrene coated onto hematite measured by unscheduled DNA synthesis in vivo in the rat. Mutagen 2003,18(5):449–455. 10.1093/mutage/geg016
Garry S, Nesslany F, Aliouat E, Haguenoer JM, Marzin D: Hematite (Fe 2 O 3 ) acts by oxidative stress and potentiates benzo[a]pyrene genotoxicity. Mutat Res 2004,563(2):117–129.
Bhattacharya K: Comparative analysis of fine and nanoparticles for cellular uptake, oxidative stress and genomic damage in human lung cells. PhD thesis. University of Duisburg-Essen, Germany; 2008.
Braydich-Stolle LK, Murdock RC, Szczublewski K, Schlager JJ, Jiang J, Biswas P, Hussain SM: The effect of titanium dioxide nanoparticles on mouse keratinocytes (HEL-30 cells). International Congress of Nanobiotechnology & Nanomedicine. San Francisco; USA 2007.
He YT, Wan J, Tokunga T: Kinetic stability of hematite nanoparticles: the effect of particle. J Nanop Res 2008,10(2):321–332. 10.1007/s11051-007-9255-1
Gurr JR, Wang AS, Chen CH, Jan KY: Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005,213(1–2):66–73. 10.1016/j.tox.2005.05.007
Kang SJ, Kim BM, Lee YJ, Chung HW: Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 2008, 49: 399–405. 10.1002/em.20399
Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G: Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 2003,31(18):5377–88. 10.1093/nar/gkg728
Pyenson H, Tracy PH: A 1,10 Phenanthroline method for the determination of iron in powdered milk. J of Dairy Sci 1945,28(5):401–412.
Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G: DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 2005,65(10):4020–4030. 10.1158/0008-5472.CAN-04-3055
Yamamoto F, Kasai H, Bessho T, Chung MH, Inoue H, Ohtsuka E, Hori T, Nishimura S: Ubiquitous presence in mammalian cells of enzymatic activity specifically cleaving 8-hydroxyguanine-containing DNA. Jpn J Cancer Res 1992, 83: 351–357.