Titanium as a Beneficial Element for Crop Production
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aghdam, 2016, Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions, Braz. J. Bot., 39, 139, 10.1007/s40415-015-0227-x
Alcaraz-Lopez, 2003, Effects of foliar sprays containing calcium, magnesium and titanium on plum (Prunus domestica L.) fruit quality, J. Plant Physiol., 160, 1441, 10.1078/0176-1617-00999
Alcaraz-Lopez, , Effect of the in-season combined leaf supply of calcium, magnesium and titanium on peach (Prunus persica L), J. Sci. Food Agric., 84, 949, 10.1002/jsfa.1703
Alcaraz-Lopez, , Effects of titanium-containing foliar sprays on calcium assimilation in nectarine fruits, Nutriçao Mineral: Causas e Consequências da Dependencia da Fertilaçao, 66
Alcaraz-Lopez, 2005, Induction of fruit calcium assimilation and its influence on the quality of tabel grapes, Span. J. Agr. Res., 3, 335, 10.5424/sjar/2005033-156
Alscher, 2002, Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 53, 1331, 10.1093/jxb/53.372.1331
Amos, 2013, Titanium mineralization in ferritin: a room temperature nonphotochemical preparation and biophysical characterization, J. Biol. Inorg. Chem., 18, 145, 10.1007/s00775-012-0959-z
Andersen, 2016, Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles, Environ. Toxicol. Chem., 35, 2223, 10.1002/etc.3374
Anderson, 1973, Heavy metal toxicity: levels of nickel, cobalt, and chromium in the soil and plants associated with visual symptoms and variations in the growth of an oat crop, Aust. J. Agri. Res., 24, 557, 10.1071/AR9730557
Anke, 2004, Titanium, Elements and Their Compounds in the Environment, 2nd Edn., 1125, 10.1002/9783527619634.ch45
Arnon, 1939, The essentiality of certain elements in minute quantity for plants with special reference to copper, Plant Physiol., 14, 371, 10.1104/pp.14.2.371
Asli, 2009, Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport, Plant Cell Environ., 32, 577, 10.1111/j.1365-3040.2009.01952.x
Berg, 1997, Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey, Sci. Total Environ., 208, 197, 10.1016/S0048-9697(97)00253-2
Biacs, 1997, Biochemical aspect on the effect of Titavit treatment on carotenoids, lipds and antioxiants in spice red pepper, Physiology, Biochemistry and Molecular Biology of Plant Lipids, 215, 10.1007/978-94-017-2662-7_68
Boonyanitipong, 2011, Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L, Int. J. Biosci. Biochem. Bioinform., 1, 282, 10.7763/IJBBB.2011.V1.53
Bottini, 1964, Effect of trace elements on plant growth, Ann. Sper. Agric., 18, 609
Bowles, 2011, Rock-Forming Minerals. vol. 5. Non-silicates Oxides, Hydroxides and Sulphides. 2nd Edn
Buettner, 2012, Titanium (IV) and vitamin C: aqueous complexes of a bioactive form of Ti (IV), Inorg. Chem., 51, 11030, 10.1021/ic301545m
Burke, 2015, Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes, Int. J. Mol. Sci., 16, 23630, 10.3390/ijms161023630
Cabannes, 2011, A comparison of sulfate and selenate accumulation in relation to the expression of sulfate transporter genes in Astragalus species, Plant Physiol., 187, 2227, 10.1104/pp.111.183897
Cannon, 1968, Metal Absorption by Equisetum (Horsetail). Geological Survey Bulletin 1278-A.
Cao, 2014, Determination of forty six elements in different organs of Orychophragmus violaceus in agricultural farm, Asian J. Chem., 26, 1038, 10.14233/ajchem.2014.15837
Carvajal, 1995, Effect of Ti (IV) on Fe activity in Capsicum anuum, Phytochemistry, 39, 977, 10.1016/0031-9422(95)00095-O
Carvajal, 1998, Why titanium is a beneficial element for plants, J. Plant Nutr., 21, 655, 10.1080/01904169809365433
Carvajal, 1994, Effect of titanium (IV) application on some enzymatic activities in several developing stages of red pepper plants, J. Plant Nutr., 17, 243, 10.1080/01904169409364724
Carvajal, 1995, Leaf spray with Ti(IV) ascorbate improves the iron uptake and iron activity in Capsicum annuum L. plants, Iron Nutrition in Soils and Plants, 1, 10.1007/978-94-011-0503-3_1
Ceccantini, 1997, Rare earth elments and titanium in plants, soils and groundwaters in the alkaline-ultramafic complex of Salitre, MG, Brazil, Contaminated Soils, 3rd International Conference on the Biogeochemistry of Trace Elements
Chao, 2005, Method for Providing Enhanced Photosynthesis
Chen, 2013, Iron is involved in the maintenance of circadian period length in Arabidopsis, Plant Physiol., 161, 1409, 10.1104/pp.112.212068
Cigler, 2010, Interactions between iron and titanium metabolism in spinach: a chlorophyll fluorescence study in hydropony, J. Plant Physiol., 167, 1592, 10.1016/j.jplph.2010.06.021
Clement, 2013, Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure, Chemosphere, 90, 1083, 10.1016/j.chemosphere.2012.09.013
Connolly, 2002, Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation, Plant Cell, 14, 1347, 10.1105/tpc.001263
Connor, 1975, Background geochemistry of some rocks, soils plants and vegetables in the conterminous United States, Statistical Studies in Field Geochemistry, Geological Survey Professional Paper 574F
Cook, 2009, Titanium as an indicator of residual soil on arid-land plants, J. Environ. Qual., 38, 188, 10.2134/jeq2007.0034
Cornu, 1999, Evidence of titatnium mobility in soil profiles, Manaus, central Amazonia, Geoderma, 91, 281, 10.1016/S0016-7061(99)00007-5
Cox, 2016, Siliver and titanium nanoparticle toxicity in plants: a review of current research, Plant Physiol. Biochem., 107, 147, 10.1016/j.plaphy.2016.05.022
Daood, 1988, Effect of titanium on the activity of lipoxygenase, J. Plant Nutr., 11, 505, 10.1080/01904168809363818
Dehkourdi, 2013, Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro, Biol. Trace Elem. Res., 155, 283, 10.1007/s12011-013-9788-3
Demidchik, 2002, Nonselective cation channels in plants, Annu. Rev. Plant Biol., 53, 67, 10.1146/annurev.arplant.53.091901.161540
Dolatabadi, 2015, Impact of nanosized titanium dioxide on agronomical and physiological characteristics of annual medic (Medicago scutellata L.), Cercetari Agronomice Moldova, 48, 53, 10.1515/cerce-2015-0041
Du, 2011, TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil, J. Environ. Monit., 13, 822, 10.1039/c0em00611d
Du, 2012, Redistribution and mobilization of titaunium, zirconium and thorium in an intensely weathered lateritic profile in Western Australia, Chem. Geol., 330, 101, 10.1016/j.chemgeo.2012.08.030
Eichert, 2012, Uptake and release of elements by leaves and other aerial plant parts, Marschner's Minearl Nutrition of Higher Plants, 71, 10.1016/B978-0-12-384905-2.00004-2
Eide, 1996, A novel iron-regulated metal transporter from plants identified by functional expression in yeast, Proc. Natl. Acad. Sci. U.S.A, 93, 5624, 10.1073/pnas.93.11.5624
Ernst, 1985, Bedeutung einer veranderten Mineralstoffverfiigbarkeit (Schwer-metalle, AI, Ti) fiir Wachsrums und Selektionsprozesse in Waldern, Bielefelder Okol. Beitr, 1, 143
Fallahi, 2013, Principles and practices of foliar nutrients with an emphasis on nitrogen and calcium sprays in apple, Horttechnology, 23, 542, 10.21273/HORTTECH.23.5.542
Feizi, 2013, Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill), Chemosphere, 91, 506, 10.1016/j.chemosphere.2012.12.012
Feizi, 2012, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace. Elem. Res., 146, 101, 10.1007/s12011-011-9222-7
Fisher, 1997, A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities, J. Biol. Chem., 272, 1565, 10.1074/jbc.272.3.1565
Fisher, 1998, Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferrin, J. Biol. Chem., 273, 17553, 10.1074/jbc.273.28.17553
Frazier, 2014, Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum), Funct. Integr. Genomics, 14, 75, 10.1007/s10142-013-0341-4
Frutos, 1996, Improvement of the nitrogen uptake induced by titanium (IV) leaf supply in nitrogen-stressed pepper seedlings, J. Plant Nutr., 19, 771, 10.1080/01904169609365159
Gao, 2008, Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase?, Biometals, 21, 211, 10.1007/s10534-007-9110-y
Gao, 2013, Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings, Environ. Pollut., 176, 63, 10.1016/j.envpol.2013.01.027
Geilmann, 1920, Uber die Verbreitung des Titans in Boden und Pflanzen, J. Landwinsch., 68, 107
Ghosh, 2010, Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes, Chemosphere, 81, 1253, 10.1016/j.chemosphere.2010.09.022
Giménez, 1990, Titanium in plant nutrition. III. Effect of Ti (IV) on yield of Capsicum annuum L., Nutricion Mineral Bajo Condiciones de Estres, 123
Gogos, 2012, Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities, J. Agric. Food Chem., 60, 9781, 10.1021/jf302154y
Gogos, 2016, Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment, J. Nanobiotechnol., 14, 40, 10.1186/s12951-016-0191-z
Grajkowski, 2007, Influence of three biostimulants on yielding and fruit quality of three primocane raspberry cultivars, Acta. Sci. Pol. Hortorum Cult., 6, 29
Guerinot, 2000, The ZIP family of metal transporters, Biochim. Biophys. Acta, 1465, 190, 10.1016/S0005-2736(00)00138-3
Guha, 1966, The trace and major element composition of the leaves of some deciduous trees. ll. Seasonal changes, Plant Soil, 24, 90, 10.1007/BF01373076
Guo, 1996, Preliminary study on rare earth bound proteins in natural plant fern Dicranopteris dichotoma, J. Radioanal. Nucl. Chem., 209, 91, 10.1007/BF02063534
Guo, 2000, TiIV uptake and release by human serum transferrin and recognition of TiIV-transferrin by cancer cells: understanding the mechanism of action of the anticancer drug titanocene dichloride, Biochemistry, 39, 10023, 10.1021/bi000798z
Haghighi, 2012, The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato, Biol. Trace. Elem. Res., 150, 381, 10.1007/s12011-012-9481-y
Haghighi, 2014, The effect of N-TiO2 on tomato, onion, and radish seed germination, J. Crop Sci. Biotechnol., 17, 221, 10.1007/s12892-014-0056-7
Hanif, 2015, Phyto-availability of phosphorus to Lactuca sativa in response to soil applied TiO2 nanoparticles, Pakistan J. Agri. Sci., 52, 177
Hara, 1976, Growth response of cabbage plants to transition elements under water culture conditions, Soil Sci. Plant Nutr., 22, 307, 10.1080/00380768.1976.10432993
Hatami, 2014, Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants, J. Biol. Environ. Sci., 8, 53
Hong, , Effect of nano-anatase TiO2 on spectral characterization of photosystem particles from spinach, Chem. Res. China Univ, 21, 196
Hong, , Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach, Biol. Trace Element Res., 105, 269, 10.1385/BTER:105:1-3:269
Hrubý, 2002, Contribution to understanding the mechanism of Titanium action in plant, J. Plant Nutr., 25, 577, 10.1081/PLN-120003383
Hu, 2004, Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review, J. Plant Nutr., 27, 183, 10.1081/PLN-120027555
Huang, 1993, The use of titanium chelate in agriculture, Titanium 92 Science and Technology, Proc. Symp. 3. Miner. Met. Mater. Soc, 2779
Hutton, 1956, The paleopedology of Norfolk Island, Eur. J. Soil Sci., 7, 255, 10.1111/j.1365-2389.1956.tb00883.x
István, 1991, Physilogically beneficial effects of titanium, Water Air Soil Pollut., 57, 675, 10.1007/BF00282931
Iversen, 2011, Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies, Nano Today, 6, 176, 10.1016/j.nantod.2011.02.003
Jaberzadeh, 2013, Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress, Not. Bot. Horti Agrobot. Cluj Napoca, 41, 201, 10.15835/nbha4119093
Kabata-Pendias, 2001, Trace Elements in Soils and Plants
Kah, 2013, Nanopesticides: state of knowledge, environmental fate, and exposure modeling, Crit. Rev. Environ. Sci. Technol, 43, 1823, 10.1080/10643389.2012.671750
Kakei, 2012, OsYSL16 plays a role in the allocation of iron, Plant Mol. Biol., 79, 583, 10.1007/s11103-012-9930-1
Kaup, 1987, Determining Ti source and distribution within a pleustalf by micromorphology, submicroscopy and elemental analysis, Geoderma, 40, 141, 10.1016/0016-7061(87)90019-X
Kelemen, 1993, Distribution and intracellular localization of titanium in plants after titanium treatment, Food Struct., 12, 67
Keller, 2013, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15, 1, 10.1007/s11051-013-1692-4
Kiapour, 2015, Evaluation of the application of gibbrellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.), Int. J. Agron. Agric. Res., 6, 138
Kim, 2011, Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles, Toxicol. Environ. Health Sci., 3, 1, 10.1007/s13530-011-0071-8
Kiss, 1985, The effect of titanium and gallium on photosynthetic rate of algae, J. Plant Nutr., 8, 825, 10.1080/01904168509363387
Kleiber, 2013, Application of “Tytanit” in greenhouse tomato growing, Acta Sci. Pol. Hortorum Cult., 12, 117
Klem, 2008, Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage, Inorg Chem., 47, 2237, 10.1021/ic701740q
Kobayashi, 2012, Iron uptake, translocation, and regulation in higher plants, Annu. Rev. Plant Biol., 63, 131, 10.1146/annurev-arplant-042811-105522
Konishi, 1936, Inorganic constituents of green-manure crops, J. Agri. Chem. Soc., 12, 916, 10.1271/nogeikagaku1924.12.328
Kořenková, 2017, Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles, Acta Agric. Scand. B Soil Plant Sci, 67, 285, 10.1080/09064710.2016.1267255
Kovacik, 2014, The effect of liquid Mg-Titanit on creation of winter wheat phytomass, Res. J. Agri. Sci., 46, 125
Kovacik, 2016, Determination of the titanium contents in the winter oilseed rape plants (Brassica napus L.) by the application of fertilizer containing titanium, Acta Univ. Agri. Silvicult. Mend. Brun., 64, 81, 10.11118/actaun201664010081
Kurepa, 2010, Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana, Nano Lett, 10, 2296, 10.1021/nl903518f
Kuzel, 2003, Mechanism of physiological effects of titanium leaf sprays on plants grown on soil, Biol. Trace Elem. Res., 91, 179, 10.1385/BTER:91:2:179
Kuzel, 2007, The effect of simulatanous magnesium application on the biological effects of titanium, Plant Soil Environ., 53, 16, 10.17221/3189-PSE
Larue, 2011, Investigation of titanium dioxide nanoparticles toxicity and uptake by plants, J. Phys, 304, 012057, 10.1088/1742-6596/304/1/012057
Larue, , Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase, Sci. Total Environ., 431, 197, 10.1016/j.scitotenv.2012.04.073
Larue, , Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed, J. Toxicol. Environ. Health A, 75, 722, 10.1080/15287394.2012.689800
Lazar, 2012, Photocatalytic water treatment by titanium dioxide: recent updates, Catalysts, 2, 572, 10.3390/catal2040572
Lei, 2007, Effects of Nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination, Biol. Trace Elem Res., 119, 68, 10.1007/s12011-007-0047-3
Lei, 2008, Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation, Biol. Trace Elem. Res., 121, 69, 10.1007/s12011-007-8028-0
Leskó, 2002, Effect of cadmium and titanium-ascorbate stress on biological active compounds in wheat seedlings, J. Plant Nutr., 25, 2571, 10.1081/PLN-120014714
Li, 2015, Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic appratus ultra-structural response, PLoS ONE, 10, e0143885, 10.1371/journal.pone.0143885
Li, 2016, Decontaminating soil organic pollutants with manufactured nanoparticles, Environ. Sci. Pollut. Res., 23, 11533, 10.1007/s11356-016-6255-7
Li, 2011, Effects of applying titanium contained trace-element fertilizer to several grain crops in Hunan, Hunan Agric. Sci., 21, 55
Lopez-Moreno, 1995, Plant biomass and fruit yield induction by Ti(IV) in P-stressed pepper crops, Fert. Res., 43, 131, 10.1007/BF00747692
Mahmoodzadeh, 2014, Effect on germination and early growth characteristics in wheat plants (Triticum aestivum L.) seeds exposed to TiO2 nanoparticles, J. Chem. Health Risks, 4, 467
Mahmoodzadeh, 2013, Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus), J. Ornamental Hort. Plants, 3, 25
Mandeh, 2012, In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture, Biol. Trace Elem. Res., 150, 376, 10.1007/s12011-012-9480-z
Marcinek, 2008, The effect of foliage feeding on the structure of yield, dry weight content and macroelements in the corms of Sparaxis tricolor Ker-Gawl, Acta. Sci. Pol. Hortorum Cult., 7, 89
Markert, 1996, Instrumental Element and Multi-Element Analysis of Plant Samples: Methods and Application
Markiewicz, 2014, The effect of Tytanit application on the content of selected microelements and the biological value of tomato fruits, J. Elem., 19, 1065
Marschner, 2011, Marschner's Mineral Nutrition of Higher Plants
Martinez-Sanchez, 1993, Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annuum L, J. Plant Nutr., 16, 975, 10.1080/01904169309364586
Mattiello, 2015, Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles, Front. Plant Sci., 6, 1043, 10.3389/fpls.2015.01043
Mir, 2014, Photocatalytic degradation of herbicide bentazone in aqueous suspension of TiO2: mineralization, identification of intermdiates and reaction pathway, Environ. Technol., 35, 407, 10.1080/09593330.2013.829872
Moaveni, 2011, TiO2 nano particles affected on maize (Zea mays L), 2nd International Conference on Agricultural and Animal Science, 160
Moaveni, 2011, Study of nano particles TiO2 spraying on some yield components in barley (Hordem vulgare L.), Intl. Conf. Environ. Agri. Eng. IPCBEE, 115
Mohammadi, 2013, Effect of TiO2 nanoparticles on chickpea response to cold stress, Biol. Trace Elem. Res., 152, 403, 10.1007/s12011-013-9631-x
Mohammadi, 2014, Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress, Russian J. Plant Physiol., 61, 768, 10.1134/S1021443714050124
Moll, 2016, Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont, PLoS ONE, 11, e0155111, 10.1371/journal.pone.0155111
Morteza, 2013, Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages, SpringerPlus, 2, 247, 10.1186/2193-1801-2-247
Moseley, 2002, Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation, Plant Cell, 14, 673, 10.1105/tpc.010420
Nautsch-Laufer, 1974, Die Wirkung von Titan auf den Stoffwechsel von Phaseolus vulgaris und Zea mays
Němec, 1923, Studien uber die physiologische Bedeutung des titanium Pflanzenorganismus, Biochem. Z., 140, 583
Norman, 2011, Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia, Hortscience, 46, 426, 10.21273/HORTSCI.46.3.426
Owolade, 2008, Effects of titanium dioxide on the diseases, development and yield of edible cowpea, J. Plant Protect. Res., 48, 329, 10.2478/v10045-008-0042-5
Pais, 1992, Criteria of essentiality, beneficality and toxicity of chemical elements, Acta Aliment., 121, 145
Pais, 1977, Titanium as a new trace element, Comm. Soil Sci. Plant Anal., 8, 407, 10.1080/00103627709366732
Pais, 1969, Trace-element experiments with tomato and paprika, Kberletugyi Kozlem, 62, 25
Pandey, 2013, Biochemical Nutrient Pathway in Plants Applied as Foliar Spray: Phosphorus and Iron
Paret, 2013, Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato, Phytopathology, 103, 228, 10.1094/PHYTO-08-12-0183-R
Pellet, 1905, Titanium, Ann. Sci. Agron. Ser., 10, 20
Pilon-Smits, 2009, Physiological functions of beneficial elements, Curr. Opin. Plant Biol., 12, 267, 10.1016/j.pbi.2009.04.009
Qi, 2013, Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress, Biol. Trace Element Res., 156, 323, 10.1007/s12011-013-9833-2
Radkowski, 2015, Effects of foliar application of titanium on seed yield in timothy (Phleum pratense L.), Ecol. Chem. Eng., 22, 691, 10.1515/eces-2015-0042
Rafique, 2015, Growth response of wheat to titania nanoparticles application, NUST J. Eng. Sci., 7, 42
Raliya, , TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.), Biotechnol. Rep., 5, 22, 10.1016/j.btre.2014.10.009
Raliya, , Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant, Metallomics, 7, 1584, 10.1039/C5MT00168D
Ramakrishna, 1989, Uptake of titanium and iron by Ipomoea biloba from titaniferrous sands, Environ. Exp. Bot., 29, 293, 10.1016/0098-8472(89)90002-6
Reimann, 2001, Comparison of the element compositin in several plant species and their substrate from a 1555000 km2 area in northern Europe, Sci. Total Environ., 278, 87, 10.1016/S0048-9697(00)00890-1
Rezaei, 2015, Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr-e-Qods, Iran", Biol. Forum, 7, 957
Römheld, 1986, Evidence for a specific uptake system for iron phytosiderophore in roots of grasses, Plant Physiol., 80, 175, 10.1104/pp.80.1.175
Ruffini Castiglione, 2010, The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L, J. Nanopart. Res., 13, 2443, 10.1007/s11051-010-0135-8
Samadi, 2014, Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot Length and photosynthetic pigments of Mentha piperita, Int. J. Plant Soil Sci., 3, 408, 10.9734/IJPSS/2014/7641
Scagel, 2008, Nitrogen availability alters mineral nutrient uptake and demand in container-grown deciduous and evergreen rhododendron, J. Environ. Hort., 26, 177
Searles, 2003, Nitrate photo-assimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen, Plant Cell Environ., 26, 1247, 10.1046/j.1365-3040.2003.01047.x
Serrano, 2004, Effect of preharvest sprays containing calcium, magnesium and titanium on the quality of peaches and nectarines at harvest and during postharvest storage, J. Sci. Food Agric., 84, 1270, 10.1002/jsfa.1753
Servin, 2012, Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants, Environ. Sci. Technol., 46, 7637, 10.1021/es300955b
Servin, 2013, Synchrotron verification of TiO2 nanoparticle transfer from soil into the food chain, Environ. Sci. Technol., 47, 11592, 10.1021/es403368j
Servin, 2015, A review of the used of engineered nanomaterials to suppress plant disease and enhance crop yield, J. Nanopart. Res., 17, 92, 10.1007/s11051-015-2907-7
Sheppard, 1990, Characteristics of plant concentration ratios assessed in a 64-site field survey of 23 elements, J. Environ. Radioact., 11, 15, 10.1016/0265-931X(90)90041-S
Sherman, 1952, The titanium content of Hawaiian soils and its significance, Soil Sci. Soc. Am. Proc., 16, 15, 10.2136/sssaj1952.03615995001600010006x
Simon, 1988, Effect of titanium on growth and photosynthetic pigment composition of Chlorella pyrenoidosa (Green Alga). II. Effect of titanium ascorbate on pigment content and chlorophyll metabolism of Chlorella, New Results in the Research of Hardly Known Trace Elements and Their Role in the Food Chain, 87
Singh, 2016, Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil, J. Environ. Manage., 170, 88, 10.1016/j.jenvman.2016.01.015
Skupień, 2007, Influence of titanium treatment on antioxidants content and antioxidant activity of strawberries, Acta Sci. Pol. Technol. Aliment., 6, 83
Song, 2012, Physiological effect of anatase TiO2 nanoparticles on Lemna minor, Environ. Toxicol. Chem., 31, 2147, 10.1002/etc.1933
Song, , Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum), Ecotoxicol. Environ. Saf., 93, 60, 10.1016/j.ecoenv.2013.03.033
Song, , Functional analysis of TiO2 nanoparticle toxicity in three plant species, Biol. Trace Elem. Res., 155, 93, 10.1007/s12011-013-9765-x
Stace, 1968, A Handbook of Australian Soils
Sun, 2014, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut., 185, 69, 10.1016/j.envpol.2013.10.004
Szymanska, 2016, Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana, Environ. Pollut., 213, 957, 10.1016/j.envpol.2016.03.026
Takagi, 1976, Naturally occurring iron-chelating compounds in oat- and rice-root washing. I. activity measurement and preliminary characterization, Soil Sci. Plant Nutr., 22, 423, 10.1080/00380768.1976.10433004
Thevenot, 2008, Surface chemistry influence cancer killing effect of TiO2 nanoparticles, Nanomedicine, 4, 226, 10.1016/j.nano.2008.04.001
Tinoco, 2005, Ti (IV) binds to human serum transferrin more tightly than does Fe (III), J. Am. Chem. Soc., 127, 11218, 10.1021/ja052768v
Tlustoš, 2005, The role of titanium in biomass production and its influence on essential elements contents in field growing crops, Plant Soil Environ., 51, 19, 10.17221/3551-PSE
Traetta-Mosca, 1913, Titanium and the rare metals in the ash of the leaves of Kentucky tobacco cultivated in Italy, Gazzetta Chimica Italiana, 43, 437
Tripathi, 2017, An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytoxicity, Plant Physiol. Biochem., 110, 2, 10.1016/j.plaphy.2016.07.030
Tumburu, 2015, Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants, Environ. Toxicol. Chem., 34, 70, 10.1002/etc.2756
Tyler, 2004, Rare earth elements in soil and plant systems-a review, Plant Soil, 267, 191, 10.1007/s11104-005-4888-2
Varotto, 2002, The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana, Plant J., 31, 589, 10.1046/j.1365-313X.2002.01381.x
Vert, 2002, IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth, Plant Cell, 14, 1223, 10.1105/tpc.001388
Wallace, 1977, Phytotoxicity of cobalt, vanadium, titanium, silver, and chromium, Commun. Soil Sci. Plant Anal., 8, 751, 10.1080/00103627709366769
Wang, 2003, Preliminary characterization of a light-rare-earth-element- binding peptide of a natural perennial fern Dicranopteris dichotoma, Anal. Bioanal. Chem., 376, 49, 10.1007/s00216-003-1853-x
Wang, 2016, Responses of plant calmodulin to endocytosis induced by rare earth elements, Chemosphere, 154, 408, 10.1016/j.chemosphere.2016.03.106
Wang, 2014, Rare earth elements activate endocytosis in plant cells, Proc. Natl. Acad. Sci. U.S.A., 111, 12936, 10.1073/pnas.1413376111
Wang, 2011, Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana, Plant Cell Environ., 34, 811, 10.1111/j.1365-3040.2011.02284.x
Wang, 2013, Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake, J. Nanopart. Res., 15, 1417, 10.1007/s11051-013-1417-8
White, 2004, Interactions between selenium and sulphur nutrition in Arabidopsis thaliana, J. Expt. Bot., 55, 1927, 10.1093/jxb/erh192
Whitted-Haag, 2014, Foliar silicon and titanium applications influence growth and quality characteristics of annual bedding plants, Open Hort. J., 7, 6, 10.2174/1874840601407010006
Wojcik, 2002, Vigor and nutrition of apple trees in nursery as influenced by titanium sprays, J. Plant Nutr., 25, 1129, 10.1081/PLN-120003944
Wojcik, 2001, Growth and nutrition of M.26 Emla apple rootstock as influenced by titanium fertilization, J. Plant Nutr., 24, 1575, 10.1081/PLN-100106022
Xuming, 2008, Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/oxygenase mRNA expression in spinach, Biol. Trace Elem. Res., 126, 280, 10.1007/s12011-008-8203-y
Yang, 2016, Vitronectin-like protein is a first line of defense against lanthanum (III) stress in Arabidopsis leaf cells. Environ, Exp. Bot., 130, 86, 10.1016/j.envexpbot.2016.05.011
Yang, 2012, Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles, PLoS ONE, 7, e32300, 10.1371/journal.pone.0032300
Yao, 2007, Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens, Surf. Coat. Technol., 201, 6886, 10.1016/j.surfcoat.2006.09.068
Yin, 2013, Recent progress in biomedical applications of titatnium dioxide, Phys. Chem. Chem. Phys, 15, 4844, 10.1039/c3cp43938k
Yuan, 2001, Isolation and characterization of rare earth element-binding protein in roots of maize, Biol. Trace Elem. Res., 79, 185, 10.1385/BTER:79:2:185
Ze, 2011, The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana, Biol. Trace Elem. Res., 143, 1131, 10.1007/s12011-010-8901-0
Zhang, 2015, Involvement of iron-containing proteins in genome integrity in Arabidopsis thaliana, Genome Integr., 6, 2, 10.4103/2041-9414.155953
Zhang, 2015, Effects of graphene on seed germination and seedling growth, J. Nanopart. Res., 17, 78, 10.1007/s11051-015-2885-9
Zhang, 2011, A literature review of titanium metallurgical process, Hydrometallurgy, 108, 177, 10.1016/j.hydromet.2011.04.005
Zheng, 2005, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Bio. Trace Element Res., 104, 83, 10.1385/BTER:104:1:083