Titanium Nitride Plasmonic Nanohole Arrays for CMOS-Compatible Integrated Refractive Index Sensing: Influence of Layer Thickness on Optical Properties
Tóm tắt
The combination of nanohole arrays with photodetectors can be a strategy for the large-scale fabrication of miniaturized and cost-effective refractive index sensors on the Si platform. However, complementary metal–oxide–semiconductor (CMOS) fabrication processes place restrictions in particular on the material that can be used for the fabrication of the structures. Here, we focus on using the CMOS compatible transition metal nitride Titanium Nitride (TiN) for the fabrication of nanohole arrays (NHAs). We investigate the optical properties of TiN NHAs with different TiN thicknesses (50 nm, 100 nm, and 150 nm) fabricated using high-precision industrial processes for possible applications in integrated, plasmonic refractive index sensors. Reflectance measurements show pronounced Fano-shaped resonances, with resonance wavelengths between 950 and 1200 nm, that can be attributed to extraordinary optical transmission (EOT) through the NHAs. Using the measured material permittivity as an input, the measured spectra are reproduced by simulations with a large degree of accuracy: Simulated and measured resonance wavelengths deviate by less than 10 nm, with an average deviation of 4 nm observed at incidence angles of 30° and 40°. Our experimental results demonstrate that an increase in the thickness of the TiN layer from 50 to 150 nm leads to a sensitivity increase from 614.5 nm/RIU to 765.4 nm/RIU, which we attribute to a stronger coupling between individual LSPRs at the hole edges with spatially extended SPPs. Our results can be used to increase the performance of TiN NHAs for applications in on-chip plasmonic refractive index sensors.
Tài liệu tham khảo
Hill RT (2015) Plasmonic biosensors. WIREs Nanomed Nanobiotechnol 7(2):152–168. https://doi.org/10.1002/wnan.1314
Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M (2021) Plasmonic biosensors for food control. Trends Food Sci Technol 111:128–140. https://doi.org/10.1016/j.tifs.2021.02.057
Song L, Chen J, Xu BB, Huang Y (2021) Flexible plasmonic biosensors for healthcare monitoring: progress and prospects. ACS Nano. https://doi.org/10.1021/acsnano.1c07176
Brolo AG (2012) Plasmonics for future biosensors. Nat Photon 6(11):709–713. https://doi.org/10.1038/nphoton.2012.266
Owen V (1997) Real-time optical immunosensors — a commercial reality. Biosens Bioelectron 12(1):i–ii. https://doi.org/10.1016/0956-5663(96)89090-7
Ajiki Y, Kan T, Matsumoto K, Shimoyama I (2018) Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode. Appl Phys Express 11(2):022001. https://doi.org/10.7567/APEX.11.022001
Patskovsky S, Meunier M (2013) Integrated Si-based nanoplasmonic sensor with phase-sensitive angular interrogation. Ann Phys 525(6):431–436. https://doi.org/10.1002/andp.201300078
Mazzotta F, Wang G, Hägglund C, Höök F, Jonsson MP (2010) Nanoplasmonic biosensing with on-chip electrical detection. Biosens Bioelectron 26(4):1131–1136. https://doi.org/10.1016/j.bios.2010.07.008
Tokel O, Yildiz UH, Inci F, Durmus NG, Ekiz OO, Turker B, Cetin C, Rao S, Sridhar K, Natarajan N, Shafiee H, Dana A, Demirci U (2015) Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep 5(1):9152. https://doi.org/10.1038/srep09152
Augel L, Kawaguchi Y, Bechler S, Körner R, Schulze J, Uchida H, Fischer IA (2018) Integrated collinear refractive index sensor with Ge PIN photodiodes. ACS Photonics 5(11):4586–4593. https://doi.org/10.1021/acsphotonics.8b01067
Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669. https://doi.org/10.1038/35570
West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795–808 (2010). https://doi.org/10.1002/lpor.200900055
Stockman MI, Kneipp K, Bozhevolnyi SI, Saha S, Dutta A, Ndukaife J, Kinsey N, Reddy H, Guler U, Shalaev VM, Boltasseva A, Gholipour B, Krishnamoorthy HNS, MacDonald KF, Soci C, Zheludev NI, Savinov V, Singh R, Groß P, Lienau C, Vadai M, Solomon ML, Barton DR, Lawrence M, Dionne JA, Boriskina SV, Esteban R, Aizpurua J, Zhang X, Yang S, Wang D, Wang W, Odom TW, Accanto N, de Roque PM, Hancu IM, Piatkowski L, van Hulst NF, Kling MF (2018) Roadmap on plasmonics. J Opt 20(4):043001. https://doi.org/10.1088/2040-8986/aaa114
Chang C-C, Nogan J, Yang Z-P, Kort-Kamp WJM, Ross W, Luk TS, Dalvit DAR, Azad AK, Chen H-T (2019) Highly plasmonic titanium nitride by room-temperature sputtering. Sci Rep 9(1):15287. https://doi.org/10.1038/s41598-019-51236-3
Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2(4):478. https://doi.org/10.1364/OME.2.000478
Guo W-P, Mishra R, Cheng C-W, Wu B-H, Chen L-J, Lin M-T, Gwo S (2019) Titanium nitride epitaxial films as a plasmonic material platform: alternative to gold. ACS Photonics 6(8):1848–1854. https://doi.org/10.1021/acsphotonics.9b00617
Mai C, Marschmeyer S, Peczek A, Kroh A, Jose J, Reiter S, Fischer I, Wenger C, Mai A (2022) Integration aspects of plasmonic TiN-based nano-hole-arrays on Ge photodetectorsin a 200mm wafer CMOS compatible silicon technology. ECS Meeting Abstracts MA2022–02, 1174–1174. https://doi.org/10.1149/10904.0035ecst
Lumerical Inc. FDTD: 3D electromagnetic simulator (n.d.) https://www.ansys.com/products/photonics/fdtd. Accessed 23 December 2022
Gray SK (2013) Theory and modeling of plasmonic structures. J Phys Chem C 117(5):1983–1994. https://doi.org/10.1021/jp309664c
Veronis G, Fan S (2007) Overview of simulation techniques for plasmonic devices," in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds., Springer Series in Optical Sciences (Springer Netherlands, 2007), pp. 169–182. https://doi.org/10.1007/978-1-4020-4333-8_12
Vandenbosch GAE, Volski V, Verellen N, Moshchalkov VV (2011) On the use of the method of moments in plasmonic applications. Radio Sci 46(05):1–6. https://doi.org/10.1029/2010RS004582
Archambeault B, Ramahi OM, Brench C (1998) The finite-difference time-domain method," in EMI/EMC Computational Modeling Handbook, B. Archambeault, O. M. Ramahi, and C. Brench, eds. (Springer US, 1998), pp. 35–67. https://doi.org/10.1007/978-1-4757-5124-6
Vandenbosch GAE (2012) Computational Electromagnetics in Plasmonics (IntechOpen, 2012). https://doi.org/10.5772/51166
Lumerical Inc. "Broadband Fixed Angle Source Technique (BFAST)". https://optics.ansys.com/hc/en-us/articles/360034902273-Broadband-Fixed-Angle-Source-Technique-BFAST. Accessed 1 Mar 2023
Zhang J, Irannejad M, Yavuz M, Cui B (2015) Gold nanohole array with sub-1 nm roughness by annealing for sensitivity enhancement of extraordinary optical transmission biosensor. Nanoscale Res Lett 10(1):238. https://doi.org/10.1186/s11671-015-0944-x
Fadakar H, Nezhad AZ, Borji A (n.d.) Effect of surface roughness on propagation of surface plasmon polaritons along thin lossy metal films," 6
Pelleg J, Zevin LZ, Lungo S, Croitoru N (1991) Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films 197(1):117–128. https://doi.org/10.1016/0040-6090(91)90225-M
Su H-C, Lin M-Z, Huang T-W, Lee C-H (2004) A comparison between X-ray reflectivity and atomic force microscopy on the characterization of a surface roughness," Proceedings of SPIE - The International Society for Optical Engineering 50. https://doi.org/10.1117/12.539761
Patsalas P, Kalfagiannis N, Kassavetis S (2015) Optical properties and plasmonic performance of titanium nitride. Materials 8(6):3128–3154. https://doi.org/10.3390/ma8063128
Shkondin E, Repän T, Takayama O, Lavrinenko AV (2017) High aspect ratio titanium nitride trench structures as plasmonic biosensor. Opt Mater Express OME 7(11):4171–4182. https://doi.org/10.1364/OME.7.004171
Judek J, Wróbel P, Michałowski PP, Ożga M, Witkowski B, Seweryn A, Struzik M, Jastrzębski C, Zberecki K (2021) Titanium nitride as a plasmonic material from near-ultraviolet to very-long-wavelength infrared range. Materials 14(22):7095. https://doi.org/10.3390/ma14227095
Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445(7123):39–46. https://doi.org/10.1038/nature05350
Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92(10):107401. https://doi.org/10.1103/PhysRevLett.92.107401
Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express 17(4):2334. https://doi.org/10.1364/OE.17.002334
Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82(1):729–787. https://doi.org/10.1038/srep33126
Lee K-L, Chang C-C, You M-L, Pan M-Y, Wei P-K (2016) Enhancing the surface sensitivity of metallic nanostructures using oblique-angle-induced fano resonances. Sci Rep 6(1):33126. https://doi.org/10.1038/srep33126
Zhou W, Odom TW (2011) Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotech 6(7):423–427. https://doi.org/10.1038/nnano.2011.72
Rodrigo SG, Martín-Moreno L, Nikitin AY, Kats AV, Spevak IS, García-Vidal FJ (2009) Extraordinary optical transmission through hole arrays in optically thin metal films. Opt Lett OL 34(1):4–6. https://doi.org/10.1364/OL.34.000004
Salah HB, Hocini A, Melouki N, Khedrouche D (2021) Design and analysis of near infrared high sensitive metal-insulator-metal plasmonic bio-sensor. IOP Conf Ser Mater Sci Eng 1046(1):012003. https://doi.org/10.1088/1757-899X/1046/1/012003
Tathfif I, Hassan MDF, Rashid KS, Yaseer AA, Sagor RH (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519:128429. https://doi.org/10.1016/j.optcom.2022.128429
Rashid KS, Tathfif I, Yaseer AA, Hassan MF, Sagor RH (2021) Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Express OE 29(23):37541–37554. https://doi.org/10.1364/OE.442954
Rashid KS, Hassan MDF, Yaseer AA, Tathfif I, Sagor RH (2021) Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33:100440 (2021). https://doi.org/10.1016/j.sbsr.2021.100440
Tathfif I, Rashid KS, Yaseer AA, Sagor RH (2021) Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29:104795. https://doi.org/10.1016/j.rinp.2021.104795
Kaur V, Singh S (2019) Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt Fiber Technol 48:159–164. https://doi.org/10.1016/j.yofte.2018.12.015
Fu T, Chen Y, Du C, Yang W, Zhang R, Sun L, Shi D (2020) Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers. Nanotechnology 31(13):135210. https://doi.org/10.1088/1361-6528/ab61d3