Các hạt nano titanium dioxide: Triển vọng và ứng dụng trong y học
Tóm tắt
Các hạt nano kim loại và oxit kim loại, bao gồm cả hạt nano titanium dioxide, giữa các hạt nano polymer, liposome, micelles, quantum dots, dendrimer, hoặc fullerene, đang trở nên ngày càng quan trọng nhờ vào tiềm năng của chúng trong các liệu pháp y học mới. Titanium dioxide (oxy titanium(IV), titania, TiO2) là một hợp chất vô cơ có sự quan tâm khoa học gần đây nhờ vào tính năng quang hoạt. Sau khi được chiếu sáng trong môi trường nước bằng ánh sáng UV, TiO2 sản xuất một loạt các loài oxy phản ứng (ROS). Khả năng sản xuất ROS và do đó gây ra cái chết tế bào đã được ứng dụng trong liệu pháp quang động (PDT) để điều trị nhiều loại bệnh, từ bệnh vẩy nến đến ung thư. Các hạt nano titanium dioxide đã được nghiên cứu như những tác nhân nhạy cảm ánh sáng trong điều trị các khối u ác tính cũng như trong việc bất hoạt quang động của vi khuẩn kháng kháng sinh. Cả các hạt nano TiO2 nói chung, cũng như các hợp chất và sự kết hợp của chúng với các phân tử hoặc sinh phân tử khác, đều có thể được sử dụng thành công như những tác nhân nhạy cảm ánh sáng trong PDT. Hơn nữa, nhiều hợp chất hữu cơ khác nhau có thể được gắn vào các hạt nano TiO2, dẫn đến các vật liệu lai. Những cấu trúc nano này có thể có khả năng hấp thụ ánh sáng cao hơn, cho phép sử dụng chúng trong liệu pháp điều trị có mục tiêu trong y học. Để cải thiện hiệu quả của các liệu pháp chống ung thư và kháng khuẩn, nhiều phương pháp sử dụng titanium dioxide đã được thử nghiệm. Kết quả của các nghiên cứu được chọn, trình bày phạm vi ứng dụng tiềm năng, được thảo luận trong bài tổng quan này.
Từ khóa
Tài liệu tham khảo
Horikoshi, S., and Serpone, N. (2013). Introduction to nanoparticles. Microw. Nanopart. Synth. Fundam. Appl., 1–24.
Youssef, 2017, The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy, Cancer Nanotechnol., 8, 6, 10.1186/s12645-017-0032-2
ISO/TS 80004-2:2015(en) (2019, December 05). Nanotechnologies—Vocabulary—Part 2: Nano-objects. Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-2:ed-1:v1:en.
Caep, 2004, Photoinduced Reactivity of Titanium Dioxide, Prog. Solid State Chem., 32, 33, 10.1016/j.progsolidstchem.2004.08.001
Matsunaga, 1985, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, 211, 10.1111/j.1574-6968.1985.tb00864.x
Xu, 2007, Photokilling cancer cells using highly cell-specific antibody–TiO2 bioconjugates and electroporation, Bioelectrochemistry, 71, 217, 10.1016/j.bioelechem.2007.06.001
Ni, 2017, 808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells, Mater. Sci. Eng. C, 81, 252, 10.1016/j.msec.2017.08.020
Carlander, 2016, Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles, Int. J. Nanomed., 11, 625, 10.2147/IJN.S94370
Lin, 2015, Pharmacokinetics of metallic nanoparticles: Pharmacokinetics of metallic nanoparticles, WIREs NanoMed. Nanobiotechnol., 7, 189, 10.1002/wnan.1304
Janer, 2014, Cell uptake and oral absorption of titanium dioxide nanoparticles, Toxicol. Lett., 228, 103, 10.1016/j.toxlet.2014.04.014
Wang, 2007, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicol. Lett., 168, 176, 10.1016/j.toxlet.2006.12.001
Bachler, 2015, Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles, Nanotoxicology, 9, 373, 10.3109/17435390.2014.940404
Fabian, 2008, Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats, Arch. Toxicol., 82, 151, 10.1007/s00204-007-0253-y
Geraets, 2014, Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats, Part. Fibre Toxicol., 11, 30, 10.1186/1743-8977-11-30
Xie, 2011, Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles, Toxicol. Lett., 205, 55, 10.1016/j.toxlet.2011.04.034
Wu, 2009, Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure, Toxicol. Lett., 191, 1, 10.1016/j.toxlet.2009.05.020
Crosera, M., Prodi, A., Mauro, M., Pelin, M., Florio, C., Bellomo, F., Adami, G., Apostoli, P., Palma, G.D., and Bovenzi, M. (2015). Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. Int. J. Environ. Res. Public Health, 12.
Yin, 2012, Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—Generation of reactive oxygen species and cell damage, Toxicol. Appl. Pharmacol., 263, 81, 10.1016/j.taap.2012.06.001
Lee, 1985, Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years, Toxicol. Appl. Pharmacol., 79, 179, 10.1016/0041-008X(85)90339-4
Vandebriel, 2018, The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo, Part. Fibre Toxicol., 15, 9, 10.1186/s12989-018-0245-5
Ganguly, 2013, The role of dendritic cells in autoimmunity, Nat. Rev. Immunol., 13, 566, 10.1038/nri3477
Shacter, 2002, Chronic inflammation and cancer, Oncology, 16, 217
Madhubala, 2019, Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (TiO2 NPs) on human cell lines—An in vitro study, Process Biochem., 86, 186, 10.1016/j.procbio.2019.08.004
Rehman, 2016, Protective effect of TiO2 nanowhiskers on Tetra Sulphonatophenyl Porphyrin (TSPP) complexes induced oxidative stress during photodynamic therapy, Photodiagnosis Photodyn. Ther., 13, 267, 10.1016/j.pdpdt.2015.08.005
Noman, 2019, Synthesis and applications of nano-TiO2: A review, Environ. Sci. Pollut. Res., 26, 3262, 10.1007/s11356-018-3884-z
Chen, 2007, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev., 107, 2891, 10.1021/cr0500535
Muniandy, 2017, Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities, RSC Adv., 7, 48083, 10.1039/C7RA08187A
Falk, 2018, Microwave-assisted synthesis of TiO2 nanoparticles: Photocatalytic activity of powders and thin films, J. Nanopart. Res., 20, 23, 10.1007/s11051-018-4140-7
Macyk, 2010, Titanium (IV) complexes as direct TiO2 photosensitizers, Coord. Chem. Rev., 254, 2687, 10.1016/j.ccr.2009.12.037
Yuan, 2014, Effect of metal-ion doping on the characteristics and photocatalytic activity of TiO2 nanotubes for the removal of toluene from water, Water Sci. Technol., 69, 1697, 10.2166/wst.2014.071
Gupta, 2013, Photocatalytic activity of transition metal and metal ions impregnated TiO2 nanostructures for iodide oxidation to iodine formation, J. Mol. Catal. A Chem., 371, 48, 10.1016/j.molcata.2013.01.020
Savinkina, 2015, Efficiency of sensitizing nano-titania with organic dyes and peroxo complexes, Appl. Nanosci., 5, 125, 10.1007/s13204-014-0299-0
Kondratyeva, 2016, Photosensitization of titanium dioxide with 4′-dimethylaminoflavonol, Mater. Sci. Semicond. Process., 42, 62, 10.1016/j.mssp.2015.08.002
Rochkind, 2014, Using Dyes for Evaluating Photocatalytic Properties: A Critical Review, Molecules, 20, 88, 10.3390/molecules20010088
Feng, 2015, A novel folic acid-conjugated TiO2-SiO2 photosensitizer for cancer targeting in photodynamic therapy, Colloids Surf. B Biointerfaces, 125, 197, 10.1016/j.colsurfb.2014.11.035
Guiot, 2013, Stabilization of TiO2 Nanoparticles in Complex Medium through a pH Adjustment Protocol, Environ. Sci. Technol., 47, 1057, 10.1021/es3040736
Xu, 2018, Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization, Chemosphere, 212, 662, 10.1016/j.chemosphere.2018.08.108
Kubiak, 2019, Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties, Mater. Sci. Eng. C, 104, 109839, 10.1016/j.msec.2019.109839
Lagopati, 2010, Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution, J. Photochem. Photobiol. A Chem., 214, 215, 10.1016/j.jphotochem.2010.06.031
Wang, 2011, Induction of cytotoxicity by photoexcitation of TiO2 can prolong survival in glioma-bearing mice, Mol. Biol. Rep., 38, 523, 10.1007/s11033-010-0136-9
Feng, 2013, Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy, Colloids Surf. B Biointerfaces, 107, 220, 10.1016/j.colsurfb.2013.02.007
Shanmugapriya, 2019, Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review, Mater. Sci. Eng. C, 105, 110110, 10.1016/j.msec.2019.110110
Archana, 2013, In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material, Carbohydr. Polym., 95, 530, 10.1016/j.carbpol.2013.03.034
Li, 2010, Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase, J. Colloid Interface Sci., 348, 342, 10.1016/j.jcis.2010.04.045
Kayani, 2020, Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: Influence of Ce contents, Ceram. Int., 46, 381, 10.1016/j.ceramint.2019.08.272
Shah, 2019, PEGylated doped- and undoped-TiO2 nanoparticles for photodynamic Therapy of cancers, Photodiagn. Photodyn. Ther., 27, 173, 10.1016/j.pdpdt.2019.05.019
Zeni, 2018, Photocatalytic and Cytotoxic Effects of Nitrogen-Doped TiO2 Nanoparticles on Melanoma Cells, J. Nanosci. Nanotechnol., 18, 3722, 10.1166/jnn.2018.14621
Shang, 2017, Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration, J. Photochem. Photobiol. B Biol., 177, 112, 10.1016/j.jphotobiol.2017.10.016
Ismail, 2014, Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation, J. Photochem. Photobiol. B Biol., 138, 99, 10.1016/j.jphotobiol.2014.04.006
Ghaderi, 2011, Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review, J. Drug Target., 19, 475, 10.3109/1061186X.2010.526227
Jia, 2012, Nanoparticles Improve Biological Functions of Phthalocyanine Photosensitizers Used for Photodynamic Therapy, Curr. Drug Metab., 13, 1119, 10.2174/138920012802850074
Biroli, 2018, β-Substituted ZnII porphyrins as dyes for DSSC: A possible approach to photovoltaic windows, Coord. Chem. Rev., 358, 153, 10.1016/j.ccr.2017.12.012
Zhang, 2015, Anchoring Groups for Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 7, 3427, 10.1021/am507334m
Rehman, 2016, Biomedical applications of nano-titania in theranostics and photodynamic therapy, Biomater. Sci., 4, 40, 10.1039/C5BM00332F
Pucelik, 2019, Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis, Catal. Today, 335, 538, 10.1016/j.cattod.2019.02.070
Pan, 2015, Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles, Colloids Surf. B Biointerfaces, 130, 292, 10.1016/j.colsurfb.2015.04.028
Pan, X., Liang, X., Yao, L., Wang, X., Jing, Y., Ma, J., Fei, Y., Chen, L., and Mi, L. (2017). Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine. Nanomaterials, 7.
Yurt, 2018, Photodynamic therapy and nuclear imaging activities of zinc phthalocyanine-integrated TiO2 nanoparticles in breast and cervical tumors, Chem. Biol. Drug Des., 91, 789, 10.1111/cbdd.13144
Ince, 2019, Antimicrobial photodynamic therapy against Staphylococcus aureus using zinc phthalocyanine and zinc phthalocyanine-integrated TiO2 nanoparticles, J. Porphyr. Phthalocyanines, 23, 206, 10.1142/S1088424619500238
Ozturk, 2018, Antibacterial properties of subphthalocyanine and subphthalocyanine-TiO2 nanoparticles on Staphylococcus aureus and Escherichia coli, J. Porphyr. Phthalocyanines, 22, 1099, 10.1142/S1088424618501122
Mantareva, V., Eneva, I., Kussovski, V., Borisova, E., and Angelov, I. (2015, January 8). Antimicrobial photodisinfection with Zn(II) phthalocyanine adsorbed on TiO2 upon UVA and red irradiation. Proceedings of the 18th International School on Quantum Electronics: Laser Physics and Applications; International Society for Optics and Photonics, Sozopol, Bulgaria.
Lopez, 2010, Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications, NanoMed. Nanotechnol. Biol. Med., 6, 777, 10.1016/j.nano.2010.04.007
Perillo, 2016, Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light, World J. Appl. Chem., 1, 9
Zhao, 2015, Bio-imaging and Photodynamic Therapy with Tetra Sulphonatophenyl Porphyrin (TSPP)-TiO2 Nanowhiskers: New Approaches in Rheumatoid Arthritis Theranostics, Sci. Rep., 5, 1
Rehman, 2016, Photoactivated TiO2 Nanowhiskers and Tetra Sulphonatophenyl Porphyrin Normoglycemic Effect on Diabetes Mellitus During Photodynamic Therapy, J. Nanosci. Nanotechnol., 16, 12691, 10.1166/jnn.2016.12995
Youssef, 2018, Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy, Photodiagnosis Photodyn. Ther., 22, 115, 10.1016/j.pdpdt.2018.03.005
Tuchina, 2010, TiO2 nanoparticle enhanced photodynamic inhibition of pathogens, Laser Phys. Lett., 7, 607, 10.1002/lapl.201010030
Yordanova, 2017, Theranostics in nuclear medicine practice, Onco Targets Ther., 10, 4821, 10.2147/OTT.S140671
Makhseed, 2013, Water-soluble non-aggregating zinc phthalocyanine and in vitro study for photodynamic therapy, Chem. Commun., 49, 11149, 10.1039/c3cc44609c
Yurt, 2017, Investigation of in vitro PDT activities of zinc phthalocyanine immobilised TiO2 nanoparticles, Int. J. Pharm., 524, 467, 10.1016/j.ijpharm.2017.03.050
Erdural, B.K., Yurum, A., Bakir, U., and Karakas, G. (2008). Antimicrobial properties of titanium nanoparticles. Functionalized Nanoscale Materials, Devices and Systems, Springer.
Shirai, 2016, Antimicrobial effect of titanium dioxide after ultraviolet irradiation against periodontal pathogen, Dent. Mater. J., 35, 511, 10.4012/dmj.2015-406
Itabashi, 2017, Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation, Bone Jt. Res., 6, 108, 10.1302/2046-3758.62.2000619
Kou, 2017, Porphyrin photosensitizers in photodynamic therapy and its applications, Oncotarget, 8, 81591, 10.18632/oncotarget.20189
Marin, 2009, Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours, Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents), 9, 162
Zimmermann, 2014, Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases, Cancer Treat. Rev., 40, 716, 10.1016/j.ctrv.2014.03.005
Rivankar, 2014, An overview of doxorubicin formulations in cancer therapy, J. Cancer Res. Ther., 10, 853, 10.4103/0973-1482.139267
Lai, 2016, TiO2 nanotube platforms for smart drug delivery: A review, Int. J. NanoMed., 11, 4819, 10.2147/IJN.S108847
Raja, 2020, Mechanoregulation of titanium dioxide nanoparticles in cancer therapy, Mater. Sci. Eng. C, 107, 110303, 10.1016/j.msec.2019.110303
Flak, 2017, Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery, Mater. Sci. Eng. C, 78, 1072, 10.1016/j.msec.2017.04.107
Chen, 2017, Near-infrared light-mediated DOX-UCNPs@mHTiO2 nanocomposite for chemo/photodynamic therapy and imaging, Colloids Surf. B Biointerfaces, 154, 429, 10.1016/j.colsurfb.2017.03.026
Wang, 2019, Synthesis of Diamond-Shaped Mesoporous Titania Nanobricks as pH-Responsive Drug Delivery Vehicles for Cancer Therapy, ChemistrySelect, 4, 8225, 10.1002/slct.201900992
Li, 2009, The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers, Biomaterials, 30, 4708, 10.1016/j.biomaterials.2009.05.015
Xu, 2016, Visible-Light-Triggered Drug Release from TiO2 Nanotube Arrays: A Controllable Antibacterial Platform, Angew. Chem. Int. Ed., 55, 593, 10.1002/anie.201508710
Zeng, 2015, Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers, Biomaterials, 57, 93, 10.1016/j.biomaterials.2015.04.006
Tong, 2017, Near-infrared mediated chemo/photodynamic synergistic therapy with DOX-UCNPs@mSiO2/TiO2-TC nanocomposite, Mater. Sci. Eng. C, 78, 998, 10.1016/j.msec.2017.04.112
Akram, 2019, Tailoring of Au-TiO2 nanoparticles conjugated with doxorubicin for their synergistic response and photodynamic therapy applications, J. Photochem. Photobiol. A Chem., 384, 112040, 10.1016/j.jphotochem.2019.112040
Bakhshizadeh, 2017, TiO2-based Mitoxantrone Imprinted Poly (Methacrylic acid-co-polycaprolctone diacrylate) Nanoparticles as a Drug Delivery System, Curr. Pharm. Des., 23, 2685, 10.2174/1381612823666170214122413
Kurzmann, 2019, In vitro evaluation of experimental light activated gels for tooth bleaching, Photochem. Photobiol. Sci., 18, 1009, 10.1039/c8pp00223a
Onwubu, S.C., Mdluli, P.S., Singh, S., and Tlapana, T. (2019). A novel application of nano eggshell/titanium dioxide composite on occluding dentine tubules: An in vitro study. Braz. Oral Res., 33.
Shaikhaliyev, 2019, Effect of the Surface of Medical Titanium Endoprostheses on the Efficiency of Fibrointegration, J. Synch. Investig., 13, 644, 10.1134/S1027451019040141
Zulfiqar, 2019, Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network, J. Photochem. Photobiol. A Chem., 384, 112039, 10.1016/j.jphotochem.2019.112039
Ran, Z., Wang, L., Fang, Y., Ma, C., and Li, S. (2019). Photocatalytic Degradation of Atenolol by TiO2 Irradiated with an Ultraviolet Light Emitting Diode: Performance, Kinetics, and Mechanism Insights. Catalysts, 9.
Cuppini, 2019, In vitro evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching, Dent. Mater. J., 38, 68, 10.4012/dmj.2017-199
Sodagar, 2017, Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics, Dent. Press J. Orthod., 22, 67, 10.1590/2177-6709.22.5.067-074.oar
Sharma, 2014, A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives, J. Orthod. Sci., 3, 29, 10.4103/2278-0203.132892
Sun, 2018, Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 & nbsp;nanotubes: An in vitro study, Int. J. NanoMed., 13, 6769, 10.2147/IJN.S175865
Huang, 2017, Surface Hydrophilicity and Antifungal Properties of TiO2 Films Coated on a Co-Cr Substrate, BioMed Res. Int., 2017, 2054723, 10.1155/2017/2054723
Gillam, D.G. (2015). Dentine Hypersensitivity: Advances in Diagnosis, Management, and Treatment, Springer.
Sereda, 2016, Novel Materials for Desensitizing and Remineralizing Dentifrices, Advanced Materials: TechConnect Briefs, 1, 135
2018, Manufacture of titanium dioxide scaffolds for medical applications, Revista Facultad de Ingeniería, 27, 17, 10.19053/01211129.v27.n48.2018.8017
Yang, 2019, Atomic Layer Deposition Coating of TiO2 Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents, Int. J. NanoMed., 14, 9955, 10.2147/IJN.S199093
Hautala, 2017, Atomic layer deposition—A novel method for the ultrathin coating of minitablets, Int. J. Pharm., 531, 47, 10.1016/j.ijpharm.2017.08.010
Amin, 2018, A new strategy for taste masking of azithromycin antibiotic: Development, characterization, and evaluation of azithromycin titanium nanohybrid for masking of bitter taste using physisorption and panel testing studies, Drug Des. Dev. Ther., 12, 3855, 10.2147/DDDT.S183534
Rendel, 2020, Degradation kinetics of caffeine in water by UV/H2O2 and UV/TiO2, Desalin. Water Treat., 173, 231, 10.5004/dwt.2020.24693
Majumdar, 2019, Recent advancements in visible-light-assisted photocatalytic removal of aqueous pharmaceutical pollutants, Clean Technol. Environ. Policy, 22, 11, 10.1007/s10098-019-01766-1
Mestre, A.S., and Carvalho, A.P. (2019). Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules, 24.
Franssen, 2019, TiO2 Photocatalyzed Oxidation of Drugs Studied by Laser Ablation Electrospray Ionization Mass Spectrometry, J. Am. Soc. Mass Spectrom., 30, 639, 10.1007/s13361-018-2120-x
Koltsakidou, A., Terzopoulou, Z., Kyzas, G., Bikiaris, D., and Lambropoulou, D. (2019). Biobased Poly(ethylene furanoate) Polyester/TiO2 Supported Nanocomposites as Effective Photocatalysts for Anti-inflammatory/Analgesic Drugs. Molecules, 24.
Osathaphan, 2008, Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate, Sol. Energy, 82, 1031, 10.1016/j.solener.2008.04.007
Ji, 2013, Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways, J. Photochem. Photobiol. A Chem., 254, 35, 10.1016/j.jphotochem.2013.01.003
Wang, 2020, UVC-assisted photocatalytic degradation of carbamazepine by Nd-doped Sb2O3/TiO2 photocatalyst, J. Colloid Interface Sci., 562, 461, 10.1016/j.jcis.2019.11.094
Tasbihi, 2015, Photocatalytic degradation of β-blockers by using immobilized titania/silica on glass slides, J. Photochem. Photobiol. A Chem., 305, 19, 10.1016/j.jphotochem.2015.02.014
Khattak, 2013, Photodegradation and Stabilization of Betamethasone-17 Valerate in Aqueous/Organic Solvents and Topical Formulations, AAPS PharmSciTech, 14, 177, 10.1208/s12249-012-9902-4