Các hạt nano titanium dioxide: Triển vọng và ứng dụng trong y học

Nanomaterials - Tập 10 Số 2 - Trang 387
Daniel Ziental1, Beata Czarczyńska-Goślińska2, Dariusz T. Mlynarczyk3, Arleta Glowacka-Sobotta4, Beata Stanisz5, Tomasz Gośliński3, Łukasz Sobotta1
1Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
2Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
3Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
4Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
5Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland

Tóm tắt

Các hạt nano kim loại và oxit kim loại, bao gồm cả hạt nano titanium dioxide, giữa các hạt nano polymer, liposome, micelles, quantum dots, dendrimer, hoặc fullerene, đang trở nên ngày càng quan trọng nhờ vào tiềm năng của chúng trong các liệu pháp y học mới. Titanium dioxide (oxy titanium(IV), titania, TiO2) là một hợp chất vô cơ có sự quan tâm khoa học gần đây nhờ vào tính năng quang hoạt. Sau khi được chiếu sáng trong môi trường nước bằng ánh sáng UV, TiO2 sản xuất một loạt các loài oxy phản ứng (ROS). Khả năng sản xuất ROS và do đó gây ra cái chết tế bào đã được ứng dụng trong liệu pháp quang động (PDT) để điều trị nhiều loại bệnh, từ bệnh vẩy nến đến ung thư. Các hạt nano titanium dioxide đã được nghiên cứu như những tác nhân nhạy cảm ánh sáng trong điều trị các khối u ác tính cũng như trong việc bất hoạt quang động của vi khuẩn kháng kháng sinh. Cả các hạt nano TiO2 nói chung, cũng như các hợp chất và sự kết hợp của chúng với các phân tử hoặc sinh phân tử khác, đều có thể được sử dụng thành công như những tác nhân nhạy cảm ánh sáng trong PDT. Hơn nữa, nhiều hợp chất hữu cơ khác nhau có thể được gắn vào các hạt nano TiO2, dẫn đến các vật liệu lai. Những cấu trúc nano này có thể có khả năng hấp thụ ánh sáng cao hơn, cho phép sử dụng chúng trong liệu pháp điều trị có mục tiêu trong y học. Để cải thiện hiệu quả của các liệu pháp chống ung thư và kháng khuẩn, nhiều phương pháp sử dụng titanium dioxide đã được thử nghiệm. Kết quả của các nghiên cứu được chọn, trình bày phạm vi ứng dụng tiềm năng, được thảo luận trong bài tổng quan này.

Từ khóa


Tài liệu tham khảo

Horikoshi, S., and Serpone, N. (2013). Introduction to nanoparticles. Microw. Nanopart. Synth. Fundam. Appl., 1–24.

Youssef, 2017, The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy, Cancer Nanotechnol., 8, 6, 10.1186/s12645-017-0032-2

ISO/TS 80004-2:2015(en) (2019, December 05). Nanotechnologies—Vocabulary—Part 2: Nano-objects. Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-2:ed-1:v1:en.

Caep, 2004, Photoinduced Reactivity of Titanium Dioxide, Prog. Solid State Chem., 32, 33, 10.1016/j.progsolidstchem.2004.08.001

Matsunaga, 1985, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, 211, 10.1111/j.1574-6968.1985.tb00864.x

Xu, 2007, Photokilling cancer cells using highly cell-specific antibody–TiO2 bioconjugates and electroporation, Bioelectrochemistry, 71, 217, 10.1016/j.bioelechem.2007.06.001

Ni, 2017, 808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells, Mater. Sci. Eng. C, 81, 252, 10.1016/j.msec.2017.08.020

Carlander, 2016, Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles, Int. J. Nanomed., 11, 625, 10.2147/IJN.S94370

Lin, 2015, Pharmacokinetics of metallic nanoparticles: Pharmacokinetics of metallic nanoparticles, WIREs NanoMed. Nanobiotechnol., 7, 189, 10.1002/wnan.1304

Janer, 2014, Cell uptake and oral absorption of titanium dioxide nanoparticles, Toxicol. Lett., 228, 103, 10.1016/j.toxlet.2014.04.014

Wang, 2007, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicol. Lett., 168, 176, 10.1016/j.toxlet.2006.12.001

Bachler, 2015, Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles, Nanotoxicology, 9, 373, 10.3109/17435390.2014.940404

Fabian, 2008, Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats, Arch. Toxicol., 82, 151, 10.1007/s00204-007-0253-y

Geraets, 2014, Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats, Part. Fibre Toxicol., 11, 30, 10.1186/1743-8977-11-30

Xie, 2011, Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles, Toxicol. Lett., 205, 55, 10.1016/j.toxlet.2011.04.034

Wu, 2009, Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure, Toxicol. Lett., 191, 1, 10.1016/j.toxlet.2009.05.020

Crosera, M., Prodi, A., Mauro, M., Pelin, M., Florio, C., Bellomo, F., Adami, G., Apostoli, P., Palma, G.D., and Bovenzi, M. (2015). Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. Int. J. Environ. Res. Public Health, 12.

Yin, 2012, Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—Generation of reactive oxygen species and cell damage, Toxicol. Appl. Pharmacol., 263, 81, 10.1016/j.taap.2012.06.001

Lee, 1985, Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years, Toxicol. Appl. Pharmacol., 79, 179, 10.1016/0041-008X(85)90339-4

Vandebriel, 2018, The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo, Part. Fibre Toxicol., 15, 9, 10.1186/s12989-018-0245-5

Ganguly, 2013, The role of dendritic cells in autoimmunity, Nat. Rev. Immunol., 13, 566, 10.1038/nri3477

Shacter, 2002, Chronic inflammation and cancer, Oncology, 16, 217

Madhubala, 2019, Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (TiO2 NPs) on human cell lines—An in vitro study, Process Biochem., 86, 186, 10.1016/j.procbio.2019.08.004

Rehman, 2016, Protective effect of TiO2 nanowhiskers on Tetra Sulphonatophenyl Porphyrin (TSPP) complexes induced oxidative stress during photodynamic therapy, Photodiagnosis Photodyn. Ther., 13, 267, 10.1016/j.pdpdt.2015.08.005

Gupta, 2011, A review of TiO2 nanoparticles, Chin. Sci. Bull., 56, 1639, 10.1007/s11434-011-4476-1

Noman, 2019, Synthesis and applications of nano-TiO2: A review, Environ. Sci. Pollut. Res., 26, 3262, 10.1007/s11356-018-3884-z

Chen, 2007, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev., 107, 2891, 10.1021/cr0500535

Muniandy, 2017, Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities, RSC Adv., 7, 48083, 10.1039/C7RA08187A

Falk, 2018, Microwave-assisted synthesis of TiO2 nanoparticles: Photocatalytic activity of powders and thin films, J. Nanopart. Res., 20, 23, 10.1007/s11051-018-4140-7

Macyk, 2010, Titanium (IV) complexes as direct TiO2 photosensitizers, Coord. Chem. Rev., 254, 2687, 10.1016/j.ccr.2009.12.037

Yuan, 2014, Effect of metal-ion doping on the characteristics and photocatalytic activity of TiO2 nanotubes for the removal of toluene from water, Water Sci. Technol., 69, 1697, 10.2166/wst.2014.071

Gupta, 2013, Photocatalytic activity of transition metal and metal ions impregnated TiO2 nanostructures for iodide oxidation to iodine formation, J. Mol. Catal. A Chem., 371, 48, 10.1016/j.molcata.2013.01.020

Savinkina, 2015, Efficiency of sensitizing nano-titania with organic dyes and peroxo complexes, Appl. Nanosci., 5, 125, 10.1007/s13204-014-0299-0

Kondratyeva, 2016, Photosensitization of titanium dioxide with 4′-dimethylaminoflavonol, Mater. Sci. Semicond. Process., 42, 62, 10.1016/j.mssp.2015.08.002

Rochkind, 2014, Using Dyes for Evaluating Photocatalytic Properties: A Critical Review, Molecules, 20, 88, 10.3390/molecules20010088

Feng, 2015, A novel folic acid-conjugated TiO2-SiO2 photosensitizer for cancer targeting in photodynamic therapy, Colloids Surf. B Biointerfaces, 125, 197, 10.1016/j.colsurfb.2014.11.035

Zaleska, 2008, Doped-TiO2: A Review, Recent Pat. Eng., 2, 157, 10.2174/187221208786306289

Guiot, 2013, Stabilization of TiO2 Nanoparticles in Complex Medium through a pH Adjustment Protocol, Environ. Sci. Technol., 47, 1057, 10.1021/es3040736

Xu, 2018, Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization, Chemosphere, 212, 662, 10.1016/j.chemosphere.2018.08.108

Kubiak, 2019, Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties, Mater. Sci. Eng. C, 104, 109839, 10.1016/j.msec.2019.109839

Lagopati, 2010, Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution, J. Photochem. Photobiol. A Chem., 214, 215, 10.1016/j.jphotochem.2010.06.031

Wang, 2011, Induction of cytotoxicity by photoexcitation of TiO2 can prolong survival in glioma-bearing mice, Mol. Biol. Rep., 38, 523, 10.1007/s11033-010-0136-9

Feng, 2013, Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy, Colloids Surf. B Biointerfaces, 107, 220, 10.1016/j.colsurfb.2013.02.007

Shanmugapriya, 2019, Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review, Mater. Sci. Eng. C, 105, 110110, 10.1016/j.msec.2019.110110

Archana, 2013, In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material, Carbohydr. Polym., 95, 530, 10.1016/j.carbpol.2013.03.034

Li, 2010, Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase, J. Colloid Interface Sci., 348, 342, 10.1016/j.jcis.2010.04.045

Kayani, 2020, Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: Influence of Ce contents, Ceram. Int., 46, 381, 10.1016/j.ceramint.2019.08.272

Shah, 2019, PEGylated doped- and undoped-TiO2 nanoparticles for photodynamic Therapy of cancers, Photodiagn. Photodyn. Ther., 27, 173, 10.1016/j.pdpdt.2019.05.019

Zeni, 2018, Photocatalytic and Cytotoxic Effects of Nitrogen-Doped TiO2 Nanoparticles on Melanoma Cells, J. Nanosci. Nanotechnol., 18, 3722, 10.1166/jnn.2018.14621

Shang, 2017, Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration, J. Photochem. Photobiol. B Biol., 177, 112, 10.1016/j.jphotobiol.2017.10.016

Ismail, 2014, Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation, J. Photochem. Photobiol. B Biol., 138, 99, 10.1016/j.jphotobiol.2014.04.006

Ghaderi, 2011, Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review, J. Drug Target., 19, 475, 10.3109/1061186X.2010.526227

Jia, 2012, Nanoparticles Improve Biological Functions of Phthalocyanine Photosensitizers Used for Photodynamic Therapy, Curr. Drug Metab., 13, 1119, 10.2174/138920012802850074

Biroli, 2018, β-Substituted ZnII porphyrins as dyes for DSSC: A possible approach to photovoltaic windows, Coord. Chem. Rev., 358, 153, 10.1016/j.ccr.2017.12.012

Zhang, 2015, Anchoring Groups for Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 7, 3427, 10.1021/am507334m

Rehman, 2016, Biomedical applications of nano-titania in theranostics and photodynamic therapy, Biomater. Sci., 4, 40, 10.1039/C5BM00332F

Pucelik, 2019, Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis, Catal. Today, 335, 538, 10.1016/j.cattod.2019.02.070

Pan, 2015, Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles, Colloids Surf. B Biointerfaces, 130, 292, 10.1016/j.colsurfb.2015.04.028

Pan, X., Liang, X., Yao, L., Wang, X., Jing, Y., Ma, J., Fei, Y., Chen, L., and Mi, L. (2017). Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine. Nanomaterials, 7.

Yurt, 2018, Photodynamic therapy and nuclear imaging activities of zinc phthalocyanine-integrated TiO2 nanoparticles in breast and cervical tumors, Chem. Biol. Drug Des., 91, 789, 10.1111/cbdd.13144

Ince, 2019, Antimicrobial photodynamic therapy against Staphylococcus aureus using zinc phthalocyanine and zinc phthalocyanine-integrated TiO2 nanoparticles, J. Porphyr. Phthalocyanines, 23, 206, 10.1142/S1088424619500238

Ozturk, 2018, Antibacterial properties of subphthalocyanine and subphthalocyanine-TiO2 nanoparticles on Staphylococcus aureus and Escherichia coli, J. Porphyr. Phthalocyanines, 22, 1099, 10.1142/S1088424618501122

Mantareva, V., Eneva, I., Kussovski, V., Borisova, E., and Angelov, I. (2015, January 8). Antimicrobial photodisinfection with Zn(II) phthalocyanine adsorbed on TiO2 upon UVA and red irradiation. Proceedings of the 18th International School on Quantum Electronics: Laser Physics and Applications; International Society for Optics and Photonics, Sozopol, Bulgaria.

Lopez, 2010, Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications, NanoMed. Nanotechnol. Biol. Med., 6, 777, 10.1016/j.nano.2010.04.007

Perillo, 2016, Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light, World J. Appl. Chem., 1, 9

Zhao, 2015, Bio-imaging and Photodynamic Therapy with Tetra Sulphonatophenyl Porphyrin (TSPP)-TiO2 Nanowhiskers: New Approaches in Rheumatoid Arthritis Theranostics, Sci. Rep., 5, 1

Rehman, 2016, Photoactivated TiO2 Nanowhiskers and Tetra Sulphonatophenyl Porphyrin Normoglycemic Effect on Diabetes Mellitus During Photodynamic Therapy, J. Nanosci. Nanotechnol., 16, 12691, 10.1166/jnn.2016.12995

Youssef, 2018, Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy, Photodiagnosis Photodyn. Ther., 22, 115, 10.1016/j.pdpdt.2018.03.005

Tuchina, 2010, TiO2 nanoparticle enhanced photodynamic inhibition of pathogens, Laser Phys. Lett., 7, 607, 10.1002/lapl.201010030

Yordanova, 2017, Theranostics in nuclear medicine practice, Onco Targets Ther., 10, 4821, 10.2147/OTT.S140671

Makhseed, 2013, Water-soluble non-aggregating zinc phthalocyanine and in vitro study for photodynamic therapy, Chem. Commun., 49, 11149, 10.1039/c3cc44609c

Yurt, 2017, Investigation of in vitro PDT activities of zinc phthalocyanine immobilised TiO2 nanoparticles, Int. J. Pharm., 524, 467, 10.1016/j.ijpharm.2017.03.050

Erdural, B.K., Yurum, A., Bakir, U., and Karakas, G. (2008). Antimicrobial properties of titanium nanoparticles. Functionalized Nanoscale Materials, Devices and Systems, Springer.

Shirai, 2016, Antimicrobial effect of titanium dioxide after ultraviolet irradiation against periodontal pathogen, Dent. Mater. J., 35, 511, 10.4012/dmj.2015-406

Itabashi, 2017, Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation, Bone Jt. Res., 6, 108, 10.1302/2046-3758.62.2000619

Kou, 2017, Porphyrin photosensitizers in photodynamic therapy and its applications, Oncotarget, 8, 81591, 10.18632/oncotarget.20189

Firestein, 2003, Evolving concepts of rheumatoid arthritis, Nature, 423, 356, 10.1038/nature01661

Marin, 2009, Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours, Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents), 9, 162

Zimmermann, 2014, Indications and limitations of chemotherapy and targeted agents in non-small cell lung cancer brain metastases, Cancer Treat. Rev., 40, 716, 10.1016/j.ctrv.2014.03.005

Rivankar, 2014, An overview of doxorubicin formulations in cancer therapy, J. Cancer Res. Ther., 10, 853, 10.4103/0973-1482.139267

Lai, 2016, TiO2 nanotube platforms for smart drug delivery: A review, Int. J. NanoMed., 11, 4819, 10.2147/IJN.S108847

Raja, 2020, Mechanoregulation of titanium dioxide nanoparticles in cancer therapy, Mater. Sci. Eng. C, 107, 110303, 10.1016/j.msec.2019.110303

Flak, 2017, Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery, Mater. Sci. Eng. C, 78, 1072, 10.1016/j.msec.2017.04.107

Chen, 2017, Near-infrared light-mediated DOX-UCNPs@mHTiO2 nanocomposite for chemo/photodynamic therapy and imaging, Colloids Surf. B Biointerfaces, 154, 429, 10.1016/j.colsurfb.2017.03.026

Wang, 2019, Synthesis of Diamond-Shaped Mesoporous Titania Nanobricks as pH-Responsive Drug Delivery Vehicles for Cancer Therapy, ChemistrySelect, 4, 8225, 10.1002/slct.201900992

Li, 2009, The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers, Biomaterials, 30, 4708, 10.1016/j.biomaterials.2009.05.015

Xu, 2016, Visible-Light-Triggered Drug Release from TiO2 Nanotube Arrays: A Controllable Antibacterial Platform, Angew. Chem. Int. Ed., 55, 593, 10.1002/anie.201508710

Zeng, 2015, Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers, Biomaterials, 57, 93, 10.1016/j.biomaterials.2015.04.006

Tong, 2017, Near-infrared mediated chemo/photodynamic synergistic therapy with DOX-UCNPs@mSiO2/TiO2-TC nanocomposite, Mater. Sci. Eng. C, 78, 998, 10.1016/j.msec.2017.04.112

Akram, 2019, Tailoring of Au-TiO2 nanoparticles conjugated with doxorubicin for their synergistic response and photodynamic therapy applications, J. Photochem. Photobiol. A Chem., 384, 112040, 10.1016/j.jphotochem.2019.112040

Bakhshizadeh, 2017, TiO2-based Mitoxantrone Imprinted Poly (Methacrylic acid-co-polycaprolctone diacrylate) Nanoparticles as a Drug Delivery System, Curr. Pharm. Des., 23, 2685, 10.2174/1381612823666170214122413

Kurzmann, 2019, In vitro evaluation of experimental light activated gels for tooth bleaching, Photochem. Photobiol. Sci., 18, 1009, 10.1039/c8pp00223a

Onwubu, S.C., Mdluli, P.S., Singh, S., and Tlapana, T. (2019). A novel application of nano eggshell/titanium dioxide composite on occluding dentine tubules: An in vitro study. Braz. Oral Res., 33.

Shaikhaliyev, 2019, Effect of the Surface of Medical Titanium Endoprostheses on the Efficiency of Fibrointegration, J. Synch. Investig., 13, 644, 10.1134/S1027451019040141

Zulfiqar, 2019, Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network, J. Photochem. Photobiol. A Chem., 384, 112039, 10.1016/j.jphotochem.2019.112039

Ran, Z., Wang, L., Fang, Y., Ma, C., and Li, S. (2019). Photocatalytic Degradation of Atenolol by TiO2 Irradiated with an Ultraviolet Light Emitting Diode: Performance, Kinetics, and Mechanism Insights. Catalysts, 9.

Cuppini, 2019, In vitro evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching, Dent. Mater. J., 38, 68, 10.4012/dmj.2017-199

Sodagar, 2017, Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics, Dent. Press J. Orthod., 22, 67, 10.1590/2177-6709.22.5.067-074.oar

Sharma, 2014, A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives, J. Orthod. Sci., 3, 29, 10.4103/2278-0203.132892

Sun, 2018, Decreased Porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 & nbsp;nanotubes: An in vitro study, Int. J. NanoMed., 13, 6769, 10.2147/IJN.S175865

Huang, 2017, Surface Hydrophilicity and Antifungal Properties of TiO2 Films Coated on a Co-Cr Substrate, BioMed Res. Int., 2017, 2054723, 10.1155/2017/2054723

Gillam, D.G. (2015). Dentine Hypersensitivity: Advances in Diagnosis, Management, and Treatment, Springer.

Sereda, 2016, Novel Materials for Desensitizing and Remineralizing Dentifrices, Advanced Materials: TechConnect Briefs, 1, 135

2018, Manufacture of titanium dioxide scaffolds for medical applications, Revista Facultad de Ingeniería, 27, 17, 10.19053/01211129.v27.n48.2018.8017

Yang, 2019, Atomic Layer Deposition Coating of TiO2 Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents, Int. J. NanoMed., 14, 9955, 10.2147/IJN.S199093

Hautala, 2017, Atomic layer deposition—A novel method for the ultrathin coating of minitablets, Int. J. Pharm., 531, 47, 10.1016/j.ijpharm.2017.08.010

Amin, 2018, A new strategy for taste masking of azithromycin antibiotic: Development, characterization, and evaluation of azithromycin titanium nanohybrid for masking of bitter taste using physisorption and panel testing studies, Drug Des. Dev. Ther., 12, 3855, 10.2147/DDDT.S183534

Rendel, 2020, Degradation kinetics of caffeine in water by UV/H2O2 and UV/TiO2, Desalin. Water Treat., 173, 231, 10.5004/dwt.2020.24693

Majumdar, 2019, Recent advancements in visible-light-assisted photocatalytic removal of aqueous pharmaceutical pollutants, Clean Technol. Environ. Policy, 22, 11, 10.1007/s10098-019-01766-1

Mestre, A.S., and Carvalho, A.P. (2019). Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules, 24.

Franssen, 2019, TiO2 Photocatalyzed Oxidation of Drugs Studied by Laser Ablation Electrospray Ionization Mass Spectrometry, J. Am. Soc. Mass Spectrom., 30, 639, 10.1007/s13361-018-2120-x

Koltsakidou, A., Terzopoulou, Z., Kyzas, G., Bikiaris, D., and Lambropoulou, D. (2019). Biobased Poly(ethylene furanoate) Polyester/TiO2 Supported Nanocomposites as Effective Photocatalysts for Anti-inflammatory/Analgesic Drugs. Molecules, 24.

Osathaphan, 2008, Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate, Sol. Energy, 82, 1031, 10.1016/j.solener.2008.04.007

Ji, 2013, Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways, J. Photochem. Photobiol. A Chem., 254, 35, 10.1016/j.jphotochem.2013.01.003

Wang, 2020, UVC-assisted photocatalytic degradation of carbamazepine by Nd-doped Sb2O3/TiO2 photocatalyst, J. Colloid Interface Sci., 562, 461, 10.1016/j.jcis.2019.11.094

Tasbihi, 2015, Photocatalytic degradation of β-blockers by using immobilized titania/silica on glass slides, J. Photochem. Photobiol. A Chem., 305, 19, 10.1016/j.jphotochem.2015.02.014

Khattak, 2013, Photodegradation and Stabilization of Betamethasone-17 Valerate in Aqueous/Organic Solvents and Topical Formulations, AAPS PharmSciTech, 14, 177, 10.1208/s12249-012-9902-4

Ruokolainen, 2016, Oxidation of Tyrosine-Phosphopeptides by Titanium Dioxide Photocatalysis, J. Am. Chem. Soc., 138, 7452, 10.1021/jacs.6b02472