Tissue morphodynamics shaping the early mouse embryo

Seminars in Cell & Developmental Biology - Tập 55 - Trang 89-98 - 2016
Ann E. Sutherland1
1Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, United States

Tài liệu tham khảo

Gustafson, 1963, The cellular basis of morphogenesis and sea urchin development, Int. Rev. Cytol., 15, 139, 10.1016/S0074-7696(08)61117-1 Gustafson, 1967, Cellular movement and contact in sea urchin morphogenesis, Biol. Rev. Camb. Philos. Soc., 42, 442, 10.1111/j.1469-185X.1967.tb01482.x Holtfreter, 1944, A study of the mechanics of gastrulation part II, J. Exp. Zool, 95, 171, 10.1002/jez.1400950203 Holtfreter, 1943, A study of the mechanics of gastrulation part I, J. Exp. Zool., 94, 261, 10.1002/jez.1400940302 Holtfreter, 1943, Properties and function of the surface coat in amphibian embryos, J. Exp. Zool., 93, 251, 10.1002/jez.1400930205 Burnside, 1968, Analysis of morphogenetic movements in the neural plate of the newt Taricha torosa, Dev. Biol., 18, 537, 10.1016/0012-1606(68)90025-0 Jacobson, 1976, Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation, J. Exp. Zool., 197, 191, 10.1002/jez.1401970205 Kam, 1991, Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy, Development, 112, 365, 10.1242/dev.112.2.365 Leptin, 1990, Cell shape changes during gastrulation in Drosophila, Development, 110, 73, 10.1242/dev.110.1.73 Mason, 2013, Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction, Nat. Cell Biol., 15, 926, 10.1038/ncb2796 Sherrard, 2010, Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination, Curr. Biol., 20, 1499, 10.1016/j.cub.2010.06.075 Miller, 1982, Differential proliferation in morphogenesis of lateral body folds, J. Exp. Zool., 221, 205, 10.1002/jez.1402210211 Miller, 1999, Domains of differential cell proliferation suggest hinged folding in avian gut endoderm, Dev. Dyn., 216, 398, 10.1002/(SICI)1097-0177(199912)216:4/5<398::AID-DVDY8>3.0.CO;2-7 Miller, 1994, Domains of differential cell proliferation and formation of amnion folds in chick embryo ectoderm, Anat. Rec., 238, 225, 10.1002/ar.1092380209 Snow, 1977, Gastrulation in the mouse: growth and regionalization of the epiblast, J. Embryol. Exp. Morph., 42, 293 Keller, 2000, Mechanisms of convergence and extension by cell intercalation, Philos. Trans. R. Soc. London B Biol. Sci., 355, 897, 10.1098/rstb.2000.0626 Keller, 2002, Shaping the vertebrate body plan by polarized embryonic cell movements, Science, 298, 1950, 10.1126/science.1079478 Holtfreter, 1939, Tissue affinity, a means of embryonic morphogenesis, Arch. Exp. Zellforsch., 23, 169 Butler, 2009, Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension, Nat. Cell Biol., 11, 859, 10.1038/ncb1894 Williams, 2014, Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate, Dev. Cell, 29, 34, 10.1016/j.devcel.2014.02.007 Udan, 2014, Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy, Development, 141, 4406, 10.1242/dev.111021 Xenopoulos, 2012, Live imaging fluorescent proteins in early mouse embryos, Methods Enzymol., 506, 361, 10.1016/B978-0-12-391856-7.00042-1 Garcia, 2011, Live imaging of mouse embryos, Cold Spring Harbor Protoc., pdb top104, 10.1101/pdb.top104 Rivera-Perez, 2003, Dynamic morphogenetic events characterize the mouse visceral endoderm, Dev. Biol., 261, 470, 10.1016/S0012-1606(03)00302-6 Srinivas, 2004, Active cell migration drives the unilateral movements of the anterior visceral endoderm, Development, 131, 1157, 10.1242/dev.01005 Thomas, 1996, Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo, Curr. Biol., 6, 1487, 10.1016/S0960-9822(96)00753-1 Stower, 2014, Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo, Philos. Trans. R. Soc. London B Biol. Sci., 369 Perea-Gomez, 2001, Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo, Int. J. Dev. Biol., 45, 311 Perea-Gomez, 2002, Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks, Dev. Cell, 3, 745, 10.1016/S1534-5807(02)00321-0 Yamamoto, 2004, Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo, Nature, 428, 387, 10.1038/nature02418 Robertson, 2014, Dose-dependent Nodal/Smad signals pattern the early mouse embryo, Semin Cell Dev. Biol., 32, 73, 10.1016/j.semcdb.2014.03.028 Hiramatsu, 2013, External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos, Dev. Cell, 27, 131, 10.1016/j.devcel.2013.09.026 Bedzhov, 2015, Development of the anterior-posterior axis is a self-organizing process in the absence of maternal cues in the mouse embryo, Cell Res., 10.1038/cr.2015.104 Bedzhov, 2014, In vitro culture of mouse blastocysts beyond the implantation stages, Nat. Protoc., 9, 2732, 10.1038/nprot.2014.186 Migeotte, 2010, Rac1-dependent collective cell migration is required for specification of the anterior-posterior body axis of the mouse, PLoS Biol., 8, e1000442, 10.1371/journal.pbio.1000442 Takaoka, 2011, Origin and role of distal visceral endoderm, a group of cells that determines anterior–posterior polarity of the mouse embryo, Nat. Cell Biol., 13, 743, 10.1038/ncb2251 Trichas, 2011, Nodal dependent differential localisation of dishevelled-2 demarcates regions of differing cell behaviour in the visceral endoderm, PLoS Biol., 9, e1001019, 10.1371/journal.pbio.1001019 Mazari, 2014, A microdevice to locally electroporate embryos with high efficiency and reduced cell damage, Development, 141, 2349, 10.1242/dev.106633 Bloomekatz, 2012, Pten regulates collective cell migration during specification of the anterior-posterior axis of the mouse embryo, Dev. Biol., 364, 192, 10.1016/j.ydbio.2012.02.005 Rakeman, 2006, Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching, Development, 133, 3075, 10.1242/dev.02473 Rodriguez, 2005, Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm, Development, 132, 2513, 10.1242/dev.01847 Srinivas, 2006, The anterior visceral endoderm-turning heads, Genesis, 44, 565, 10.1002/dvg.20249 Arnold, 2009, Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo, Nat. Rev. Mol. Cell Biol., 10, 91, 10.1038/nrm2618 Lawson, 2001, Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer, Genesis, 29, 188, 10.1002/gene.1023 Lawson, 2001, New insights into critical events of avian gastrulation, Anat. Rec., 262, 238, 10.1002/1097-0185(20010301)262:3<238::AID-AR1041>3.0.CO;2-8 Chuai, 2006, Cell movement during chick primitive streak formation, Dev. Biol., 296, 137, 10.1016/j.ydbio.2006.04.451 Voiculescu, 2007, The amniote primitive streak is defined by epithelial cell intercalation before gastrulation, Nature, 449, 1049, 10.1038/nature06211 Viebahn, 1995, Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo, Acta Anat. (Basel), 154, 79, 10.1159/000147753 Viebahn, 1995, Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study, Acta Anat. (Basel), 154, 99, 10.1159/000147756 Viebahn, 2001, Hensen’s node, Genesis, 29, 96, 10.1002/1526-968X(200102)29:2<96::AID-GENE1010>3.0.CO;2-H Halacheva, 2011, Planar cell movements and oriented cell division during early primitive streak formation in the mammalian embryo, Dev. Dyn., 240, 1905, 10.1002/dvdy.22687 Stankova, 2015, Rho kinase activity controls directional cell movements during primitive streak formation in the rabbit embryo, Development, 142, 92, 10.1242/dev.111583 Williams, 2012, Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population, Dev. Dyn., 241, 270, 10.1002/dvdy.23711 Ichikawa, 2013, Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells, PLoS One, 8, e64506, 10.1371/journal.pone.0064506 Ichikawa, 2014, Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools, Nat. Protoc., 9, 575, 10.1038/nprot.2014.035 Nakatsuji, 1986, Cinemicrographic study of the cell movement in the primitive-streak-stage mouse embryo, J. Embryol. Exp. Morphol., 96, 99 Smith, 1994, Prospective fate map of the mouse primitive streak at 7.5 days of gestation, Dev. Dyn., 201, 279, 10.1002/aja.1002010310 Cui, 2005, Analysis of tissue flow patterns during primitive streak formation in the chick embryo, Dev. Biol., 284, 37, 10.1016/j.ydbio.2005.04.021 Chuai, 2008, The mechanisms underlying primitive streak formation in the chick embryo, Curr. Top. Dev. Biol., 81, 135, 10.1016/S0070-2153(07)81004-0 Lawson, 1992, Clonal analysis of cell fate during gastrulation and early neurulation in the mouse, Ciba Found. Symp., 165, 3 Wilson, 1996, Cell fate and morphogenetic movement in the late mouse primitive streak, Mech. Dev., 55, 79, 10.1016/0925-4773(95)00493-9 Tam, 1987, The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis, Development, 99, 109, 10.1242/dev.99.1.109 Nakaya, 2009, An amicable separation: chick’s way of doing EMT, Cell Adhes. Migr., 3, 160, 10.4161/cam.3.2.7373 Nakaya, 2008, RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation, Nat. Cell Biol., 10, 765, 10.1038/ncb1739 Fuse, 2004, Conditional activation of RhoA suppresses the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation, Biochem. Biophys. Res. Commun., 318, 665, 10.1016/j.bbrc.2004.04.076 Tam, 1993, Gastrulation in the mouse embryo: ultrastructural and molecular aspects of germ layer morphogenesis, Microsc. Res. Technol., 26, 301, 10.1002/jemt.1070260405 Wagstaff, 2008, Multicellular rosette formation during cell ingression in the avian primitive streak, Dev. Dyn., 237, 91, 10.1002/dvdy.21390 Blankenship, 2006, Multicellular rosette formation links planar cell polarity to tissue morphogenesis, Dev. Cell, 11, 459, 10.1016/j.devcel.2006.09.007 Burdsal, 1993, The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak, Development, 118, 829, 10.1242/dev.118.3.829 Yamaguchi, 1994, fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation, Genes Dev., 8, 3032, 10.1101/gad.8.24.3032 Ciruna, 1997, Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak, Development, 124, 2829, 10.1242/dev.124.14.2829 Ciruna, 2001, FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak, Dev. Cell, 1, 37, 10.1016/S1534-5807(01)00017-X Zohn, 2006, p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation, Cell, 125, 957, 10.1016/j.cell.2006.03.048 Batlle, 2000, The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nat. Cell Biol., 2, 84, 10.1038/35000034 Cano, 2000, The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression, Nat. Cell Biol., 2, 76, 10.1038/35000025 Suriben, 2009, Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak, Nat. Genet., 41, 977, 10.1038/ng.435 Cheyette, 2002, Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation, Dev. Cell, 2, 449, 10.1016/S1534-5807(02)00140-5 Gloy, 2002, Frodo interacts with Dishevelled to transduce Wnt signals, Nat. Cell Biol., 4, 351, 10.1038/ncb784 Zhang, 2006, Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation, J. Biol. Chem., 281, 8607, 10.1074/jbc.M600274200 Lagathu, 2009, Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network, Diabetes, 58, 609, 10.2337/db08-1180 Parameswaran, 1995, Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation, Dev. Genet., 17, 16, 10.1002/dvg.1020170104 Kinder, 1999, The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo, Development, 126, 4691, 10.1242/dev.126.21.4691 Viotti, 2014, SOX17 links gut endoderm morphogenesis and germ layer segregation, Nat. Cell Biol., 16, 1146, 10.1038/ncb3070 Kwon, 2008, The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages, Dev. Cell, 15, 509, 10.1016/j.devcel.2008.07.017 Viotti, 2014, Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis, Philos. Trans. R. Soc. London B Biol. Sci., 369 Burtscher, 2009, Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo, Development, 136, 1029, 10.1242/dev.028415 Downs, 1993, Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope, Development, 118, 1255, 10.1242/dev.118.4.1255 Gavrilov, 2013, Genetic dissection of ventral folding morphogenesis in mouse: embryonic visceral endoderm-supplied BMP2 positions head and heart, Curr. Opin. Genet. Dev., 23, 461, 10.1016/j.gde.2013.04.001 Madabhushi, 2011, Anterior visceral endoderm directs ventral morphogenesis and placement of head and heart via BMP2 expression, Dev. Cell, 21, 907, 10.1016/j.devcel.2011.08.027 Withington, 2001, Foregut endoderm is required at head process stages for anteriormost neural patterning in chick, Development, 128, 309, 10.1242/dev.128.3.309 Egea, 2008, Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation, Genes Dev., 22, 3349, 10.1101/gad.486708 Maretto, 2008, Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3, Dev. Biol., 318, 184, 10.1016/j.ydbio.2008.03.021 Kuo, 1997, GATA4 transcription factor is required for ventral morphogenesis and heart tube formation, Genes Dev., 11, 1048, 10.1101/gad.11.8.1048 Molkentin, 1997, Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis, Genes Dev., 11, 1061, 10.1101/gad.11.8.1061 Komada, 1999, Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis, Genes Dev., 13, 1475, 10.1101/gad.13.11.1475 Constam, 2000, Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping, Development, 127, 245, 10.1242/dev.127.2.245 Fristrom, 1988, The cellular basis of epithelial morphogenesis. A review, Tissue Cell, 20, 645, 10.1016/0040-8166(88)90015-8 Gutzman, 2008, Formation of the zebrafish midbrain–hindbrain boundary constriction requires laminin-dependent basal constriction, Mech. Dev., 125, 974, 10.1016/j.mod.2008.07.004 Keller, 1992, The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser, Dev. Suppl., 81 Rolo, 2009, Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB, Dev. Biol., 327, 327, 10.1016/j.ydbio.2008.12.009 Skoglund, 2008, Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network, Development, 135, 2435, 10.1242/dev.014704 Keller, 2008, Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore, Philos. Trans. R. Soc. London B Biol. Sci., 363, 1317, 10.1098/rstb.2007.2250 Keller, 1985, The function and mechanism of convergent extension during gastrulation in Xenopus laevis, J. Embyol. Exp. Morph., 89, 185 Keller, 1989, Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis, Dev. Biol., 131, 539, 10.1016/S0012-1606(89)80024-7 Miyamoto, 1985, Formation of the notochord in living ascidian embryos, J. Embryol. Exp. Morphol., 86, 1 Warga, 1990, Cell movements during epiboly and gastrulation in zebrafish, Development, 108, 569, 10.1242/dev.108.4.569 Concha, 1998, Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis, Development, 125, 983, 10.1242/dev.125.6.983 Williams-Masson, 1998, The cellular mechanism of epithelial rearrangement during morphogenesis of the Caenorhabditis elegans dorsal hypodermis, Dev Biol, 204, 263, 10.1006/dbio.1998.9048 Walck-Shannon, 2014, Cell intercalation from top to bottom, Nat. Rev. Mol. Cell Biol., 15, 34, 10.1038/nrm3723 Walck-Shannon, 2015, Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans, Development, 142, 3549 Bertet, 2004, Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation, Nature, 429, 667, 10.1038/nature02590 Nishimura, 2012, Planar cell polarity links axes of spatial dynamics in neural-tube closure, Cell, 149, 1084, 10.1016/j.cell.2012.04.021 Gubb, 1982, A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster, J. Embryol. Exp. Morphol., 68, 37 Mlodzik, 2000, Spiny legs and prickled bodies: new insights and complexities in planar polarity establishment, Bioessays, 22, 311, 10.1002/(SICI)1521-1878(200004)22:4<311::AID-BIES1>3.0.CO;2-J Adler, 2002, Planar signaling and morphogenesis in Drosophila, Dev. Cell, 2, 525, 10.1016/S1534-5807(02)00176-4 Adler, 2012, The frizzled/stan pathway and planar cell polarity in the Drosophila wing, Curr. Top. Dev. Biol., 101, 1, 10.1016/B978-0-12-394592-1.00001-6 Heisenberg, 2000, Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation, Nature, 405, 76, 10.1038/35011068 Tada, 2000, Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway, Development, 127, 2227, 10.1242/dev.127.10.2227 Wallingford, 2000, Dishevelled controls cell polarity during Xenopus gastrulation, Nature, 405, 81, 10.1038/35011077 Wallingford, 2001, Xenopus dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis, Development, 128, 2581, 10.1242/dev.128.13.2581 Axelrod, 2002, Coupling planar cell polarity signaling to morphogenesis, ScientificWorldJournal, 2, 434, 10.1100/tsw.2002.105 Goodrich, 2011, Principles of planar polarity in animal development, Development, 138, 1877, 10.1242/dev.054080 Wallingford, 2012, Planar cell polarity and the developmental control of cell behavior in vertebrate embryos, Annu. Rev. Cell Dev. Biol., 28, 627, 10.1146/annurev-cellbio-092910-154208 Tissir, 2013, Shaping the nervous system: role of the core planar cell polarity genes, Nat. Rev. Neurosci., 14, 525, 10.1038/nrn3525 Gao, 2012, Wnt regulation of planar cell polarity (PCP), Curr. Top. Dev. Biol., 101, 263, 10.1016/B978-0-12-394592-1.00008-9 Shih, 1992, Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis, Development, 116, 915, 10.1242/dev.116.4.915 Shih, 1992, Cell motility driving mediolateral intercalation in explants of Xenopus laevis, Development, 116, 901, 10.1242/dev.116.4.901 R. Keller, J. Shih. Mediolateral intercalation of mesodermal cells in the xenopus-laevis gastrula. Bellairs, R.E., Sanders, J., Lash, J.W. (Ed), Nato Asi (Advanced Science Institutes) Series Series A Life Sciences, vol. 231 Formation And Differentiation Of Early Embryonic Mesoderm; Nato Advanced Research Workshop, Banff,Alberta, Canada, October 25-27, 1991. Viii + 341p Plenum Press: New York, New York, USA; London, England, Uk. 47-61. Elul, 1997, Cellular mechanism underlying neural convergence and extension in Xenopus laevis embryos, Dev. Biol., 191, 243, 10.1006/dbio.1997.8711 Kibar, 2001, Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail, Nat. Genet., 28, 251, 10.1038/90081 Murdoch, 2001, Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification, Hum. Mol. Genet., 10, 2593, 10.1093/hmg/10.22.2593 Montcouquiol, 2003, Identification of Vangl2 and Scrb1 as planar polarity genes in mammals, Nature, 423, 173, 10.1038/nature01618 Song, 2010, Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning, Nature, 466, 378, 10.1038/nature09129 Curtin, 2003, Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse, Curr. Biol., 13, 1129, 10.1016/S0960-9822(03)00374-9 Wang, 2006, The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells, J. Neurosci., 26, 2147, 10.1523/JNEUROSCI.4698-05.2005 Hamblet, 2002, Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure, Development, 129, 5827, 10.1242/dev.00164 Wang, 2006, Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation, Development, 133, 1767, 10.1242/dev.02347 Ezan, 2013, Revisiting planar cell polarity in the inner ear, Semin. Cell Dev. Biol., 24, 499, 10.1016/j.semcdb.2013.03.012 Murdoch, 2003, Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse, Hum. Mol. Genet., 12, 87, 10.1093/hmg/ddg014 Lu, 2004, PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates, Nature, 430, 93, 10.1038/nature02677 Kibar, 2007, Mutations in VANGL1 associated with neural-tube defects, N. Engl. J. Med., 356, 1432, 10.1056/NEJMoa060651 Kibar, 2009, Novel mutations in VANGL1 in neural tube defects, Hum. Mutat., 30, E706, 10.1002/humu.21026 Kibar, 2011, Contribution of VANGL2 mutations to isolated neural tube defects, Clin. Genet., 80, 76, 10.1111/j.1399-0004.2010.01515.x Allache, 2012, Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis, Birth Defects Res. A Clin. Mol. Teratol., 94, 176, 10.1002/bdra.23002 De Marco, 2012, FZD6 is a novel gene for human neural tube defects, Hum. Mutat., 33, 384, 10.1002/humu.21643 Robinson, 2012, Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis, Hum. Mutat., 33, 440, 10.1002/humu.21662 Jiang, 2005, Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells, Curr. Biol., 15, 79, 10.1016/j.cub.2004.12.041 Jessen, 2002, Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements, Nat. Cell Biol., 4, 610, 10.1038/ncb828 Wallingford, 2002, Neural tube closure requires Dishevelled-dependent convergent extension of the midline, Development, 129, 5815, 10.1242/dev.00123 Jenny, 2003, Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling, EMBO J., 22, 4409, 10.1093/emboj/cdg424 Darken, 2002, The planar polarity gene strabismus regulates convergent extension movements in Xenopus, EMBO J., 21, 976, 10.1093/emboj/21.5.976 Goto, 2002, The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus, Dev. Biol., 247, 165, 10.1006/dbio.2002.0673 De Marco, 2011, Human neural tube defects: genetic causes and prevention, Biofactors, 37, 261, 10.1002/biof.170 De Marco, 2014, Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population, Birth Defects Res. A Clin. Mol. Teratol., 10.1002/bdra.23255 Yen, 2009, PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation, Development, 136, 2039, 10.1242/dev.030601 Wong, 1993, Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells, J. Cell Biol., 123, 209, 10.1083/jcb.123.1.209 Yang, 1993, Embryonic mesodermal defects in alpha 5 integrin-deficient mice, Development, 119, 1093, 10.1242/dev.119.4.1093 George, 1993, Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin, Development, 119, 1079, 10.1242/dev.119.4.1079 Imuta, 2014, Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos, Mech. Dev., 132, 44, 10.1016/j.mod.2014.01.004 Harris, 2007, Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects, Birth Defects Res. A Clin. Mol. Teratol., 79, 187, 10.1002/bdra.20333