Tissue morphodynamics shaping the early mouse embryo
Tài liệu tham khảo
Gustafson, 1963, The cellular basis of morphogenesis and sea urchin development, Int. Rev. Cytol., 15, 139, 10.1016/S0074-7696(08)61117-1
Gustafson, 1967, Cellular movement and contact in sea urchin morphogenesis, Biol. Rev. Camb. Philos. Soc., 42, 442, 10.1111/j.1469-185X.1967.tb01482.x
Holtfreter, 1944, A study of the mechanics of gastrulation part II, J. Exp. Zool, 95, 171, 10.1002/jez.1400950203
Holtfreter, 1943, A study of the mechanics of gastrulation part I, J. Exp. Zool., 94, 261, 10.1002/jez.1400940302
Holtfreter, 1943, Properties and function of the surface coat in amphibian embryos, J. Exp. Zool., 93, 251, 10.1002/jez.1400930205
Burnside, 1968, Analysis of morphogenetic movements in the neural plate of the newt Taricha torosa, Dev. Biol., 18, 537, 10.1016/0012-1606(68)90025-0
Jacobson, 1976, Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation, J. Exp. Zool., 197, 191, 10.1002/jez.1401970205
Kam, 1991, Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy, Development, 112, 365, 10.1242/dev.112.2.365
Leptin, 1990, Cell shape changes during gastrulation in Drosophila, Development, 110, 73, 10.1242/dev.110.1.73
Mason, 2013, Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction, Nat. Cell Biol., 15, 926, 10.1038/ncb2796
Sherrard, 2010, Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination, Curr. Biol., 20, 1499, 10.1016/j.cub.2010.06.075
Miller, 1982, Differential proliferation in morphogenesis of lateral body folds, J. Exp. Zool., 221, 205, 10.1002/jez.1402210211
Miller, 1999, Domains of differential cell proliferation suggest hinged folding in avian gut endoderm, Dev. Dyn., 216, 398, 10.1002/(SICI)1097-0177(199912)216:4/5<398::AID-DVDY8>3.0.CO;2-7
Miller, 1994, Domains of differential cell proliferation and formation of amnion folds in chick embryo ectoderm, Anat. Rec., 238, 225, 10.1002/ar.1092380209
Snow, 1977, Gastrulation in the mouse: growth and regionalization of the epiblast, J. Embryol. Exp. Morph., 42, 293
Keller, 2000, Mechanisms of convergence and extension by cell intercalation, Philos. Trans. R. Soc. London B Biol. Sci., 355, 897, 10.1098/rstb.2000.0626
Keller, 2002, Shaping the vertebrate body plan by polarized embryonic cell movements, Science, 298, 1950, 10.1126/science.1079478
Holtfreter, 1939, Tissue affinity, a means of embryonic morphogenesis, Arch. Exp. Zellforsch., 23, 169
Butler, 2009, Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension, Nat. Cell Biol., 11, 859, 10.1038/ncb1894
Williams, 2014, Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate, Dev. Cell, 29, 34, 10.1016/j.devcel.2014.02.007
Udan, 2014, Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy, Development, 141, 4406, 10.1242/dev.111021
Xenopoulos, 2012, Live imaging fluorescent proteins in early mouse embryos, Methods Enzymol., 506, 361, 10.1016/B978-0-12-391856-7.00042-1
Garcia, 2011, Live imaging of mouse embryos, Cold Spring Harbor Protoc., pdb top104, 10.1101/pdb.top104
Rivera-Perez, 2003, Dynamic morphogenetic events characterize the mouse visceral endoderm, Dev. Biol., 261, 470, 10.1016/S0012-1606(03)00302-6
Srinivas, 2004, Active cell migration drives the unilateral movements of the anterior visceral endoderm, Development, 131, 1157, 10.1242/dev.01005
Thomas, 1996, Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo, Curr. Biol., 6, 1487, 10.1016/S0960-9822(96)00753-1
Stower, 2014, Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo, Philos. Trans. R. Soc. London B Biol. Sci., 369
Perea-Gomez, 2001, Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo, Int. J. Dev. Biol., 45, 311
Perea-Gomez, 2002, Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks, Dev. Cell, 3, 745, 10.1016/S1534-5807(02)00321-0
Yamamoto, 2004, Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo, Nature, 428, 387, 10.1038/nature02418
Robertson, 2014, Dose-dependent Nodal/Smad signals pattern the early mouse embryo, Semin Cell Dev. Biol., 32, 73, 10.1016/j.semcdb.2014.03.028
Hiramatsu, 2013, External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos, Dev. Cell, 27, 131, 10.1016/j.devcel.2013.09.026
Bedzhov, 2015, Development of the anterior-posterior axis is a self-organizing process in the absence of maternal cues in the mouse embryo, Cell Res., 10.1038/cr.2015.104
Bedzhov, 2014, In vitro culture of mouse blastocysts beyond the implantation stages, Nat. Protoc., 9, 2732, 10.1038/nprot.2014.186
Migeotte, 2010, Rac1-dependent collective cell migration is required for specification of the anterior-posterior body axis of the mouse, PLoS Biol., 8, e1000442, 10.1371/journal.pbio.1000442
Takaoka, 2011, Origin and role of distal visceral endoderm, a group of cells that determines anterior–posterior polarity of the mouse embryo, Nat. Cell Biol., 13, 743, 10.1038/ncb2251
Trichas, 2011, Nodal dependent differential localisation of dishevelled-2 demarcates regions of differing cell behaviour in the visceral endoderm, PLoS Biol., 9, e1001019, 10.1371/journal.pbio.1001019
Mazari, 2014, A microdevice to locally electroporate embryos with high efficiency and reduced cell damage, Development, 141, 2349, 10.1242/dev.106633
Bloomekatz, 2012, Pten regulates collective cell migration during specification of the anterior-posterior axis of the mouse embryo, Dev. Biol., 364, 192, 10.1016/j.ydbio.2012.02.005
Rakeman, 2006, Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching, Development, 133, 3075, 10.1242/dev.02473
Rodriguez, 2005, Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm, Development, 132, 2513, 10.1242/dev.01847
Srinivas, 2006, The anterior visceral endoderm-turning heads, Genesis, 44, 565, 10.1002/dvg.20249
Arnold, 2009, Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo, Nat. Rev. Mol. Cell Biol., 10, 91, 10.1038/nrm2618
Lawson, 2001, Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer, Genesis, 29, 188, 10.1002/gene.1023
Lawson, 2001, New insights into critical events of avian gastrulation, Anat. Rec., 262, 238, 10.1002/1097-0185(20010301)262:3<238::AID-AR1041>3.0.CO;2-8
Chuai, 2006, Cell movement during chick primitive streak formation, Dev. Biol., 296, 137, 10.1016/j.ydbio.2006.04.451
Voiculescu, 2007, The amniote primitive streak is defined by epithelial cell intercalation before gastrulation, Nature, 449, 1049, 10.1038/nature06211
Viebahn, 1995, Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo, Acta Anat. (Basel), 154, 79, 10.1159/000147753
Viebahn, 1995, Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study, Acta Anat. (Basel), 154, 99, 10.1159/000147756
Viebahn, 2001, Hensen’s node, Genesis, 29, 96, 10.1002/1526-968X(200102)29:2<96::AID-GENE1010>3.0.CO;2-H
Halacheva, 2011, Planar cell movements and oriented cell division during early primitive streak formation in the mammalian embryo, Dev. Dyn., 240, 1905, 10.1002/dvdy.22687
Stankova, 2015, Rho kinase activity controls directional cell movements during primitive streak formation in the rabbit embryo, Development, 142, 92, 10.1242/dev.111583
Williams, 2012, Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population, Dev. Dyn., 241, 270, 10.1002/dvdy.23711
Ichikawa, 2013, Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells, PLoS One, 8, e64506, 10.1371/journal.pone.0064506
Ichikawa, 2014, Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools, Nat. Protoc., 9, 575, 10.1038/nprot.2014.035
Nakatsuji, 1986, Cinemicrographic study of the cell movement in the primitive-streak-stage mouse embryo, J. Embryol. Exp. Morphol., 96, 99
Smith, 1994, Prospective fate map of the mouse primitive streak at 7.5 days of gestation, Dev. Dyn., 201, 279, 10.1002/aja.1002010310
Cui, 2005, Analysis of tissue flow patterns during primitive streak formation in the chick embryo, Dev. Biol., 284, 37, 10.1016/j.ydbio.2005.04.021
Chuai, 2008, The mechanisms underlying primitive streak formation in the chick embryo, Curr. Top. Dev. Biol., 81, 135, 10.1016/S0070-2153(07)81004-0
Lawson, 1992, Clonal analysis of cell fate during gastrulation and early neurulation in the mouse, Ciba Found. Symp., 165, 3
Wilson, 1996, Cell fate and morphogenetic movement in the late mouse primitive streak, Mech. Dev., 55, 79, 10.1016/0925-4773(95)00493-9
Tam, 1987, The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis, Development, 99, 109, 10.1242/dev.99.1.109
Nakaya, 2009, An amicable separation: chick’s way of doing EMT, Cell Adhes. Migr., 3, 160, 10.4161/cam.3.2.7373
Nakaya, 2008, RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation, Nat. Cell Biol., 10, 765, 10.1038/ncb1739
Fuse, 2004, Conditional activation of RhoA suppresses the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation, Biochem. Biophys. Res. Commun., 318, 665, 10.1016/j.bbrc.2004.04.076
Tam, 1993, Gastrulation in the mouse embryo: ultrastructural and molecular aspects of germ layer morphogenesis, Microsc. Res. Technol., 26, 301, 10.1002/jemt.1070260405
Wagstaff, 2008, Multicellular rosette formation during cell ingression in the avian primitive streak, Dev. Dyn., 237, 91, 10.1002/dvdy.21390
Blankenship, 2006, Multicellular rosette formation links planar cell polarity to tissue morphogenesis, Dev. Cell, 11, 459, 10.1016/j.devcel.2006.09.007
Burdsal, 1993, The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak, Development, 118, 829, 10.1242/dev.118.3.829
Yamaguchi, 1994, fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation, Genes Dev., 8, 3032, 10.1101/gad.8.24.3032
Ciruna, 1997, Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak, Development, 124, 2829, 10.1242/dev.124.14.2829
Ciruna, 2001, FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak, Dev. Cell, 1, 37, 10.1016/S1534-5807(01)00017-X
Zohn, 2006, p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation, Cell, 125, 957, 10.1016/j.cell.2006.03.048
Batlle, 2000, The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nat. Cell Biol., 2, 84, 10.1038/35000034
Cano, 2000, The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression, Nat. Cell Biol., 2, 76, 10.1038/35000025
Suriben, 2009, Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak, Nat. Genet., 41, 977, 10.1038/ng.435
Cheyette, 2002, Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation, Dev. Cell, 2, 449, 10.1016/S1534-5807(02)00140-5
Gloy, 2002, Frodo interacts with Dishevelled to transduce Wnt signals, Nat. Cell Biol., 4, 351, 10.1038/ncb784
Zhang, 2006, Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation, J. Biol. Chem., 281, 8607, 10.1074/jbc.M600274200
Lagathu, 2009, Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network, Diabetes, 58, 609, 10.2337/db08-1180
Parameswaran, 1995, Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation, Dev. Genet., 17, 16, 10.1002/dvg.1020170104
Kinder, 1999, The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo, Development, 126, 4691, 10.1242/dev.126.21.4691
Viotti, 2014, SOX17 links gut endoderm morphogenesis and germ layer segregation, Nat. Cell Biol., 16, 1146, 10.1038/ncb3070
Kwon, 2008, The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages, Dev. Cell, 15, 509, 10.1016/j.devcel.2008.07.017
Viotti, 2014, Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis, Philos. Trans. R. Soc. London B Biol. Sci., 369
Burtscher, 2009, Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo, Development, 136, 1029, 10.1242/dev.028415
Downs, 1993, Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope, Development, 118, 1255, 10.1242/dev.118.4.1255
Gavrilov, 2013, Genetic dissection of ventral folding morphogenesis in mouse: embryonic visceral endoderm-supplied BMP2 positions head and heart, Curr. Opin. Genet. Dev., 23, 461, 10.1016/j.gde.2013.04.001
Madabhushi, 2011, Anterior visceral endoderm directs ventral morphogenesis and placement of head and heart via BMP2 expression, Dev. Cell, 21, 907, 10.1016/j.devcel.2011.08.027
Withington, 2001, Foregut endoderm is required at head process stages for anteriormost neural patterning in chick, Development, 128, 309, 10.1242/dev.128.3.309
Egea, 2008, Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation, Genes Dev., 22, 3349, 10.1101/gad.486708
Maretto, 2008, Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3, Dev. Biol., 318, 184, 10.1016/j.ydbio.2008.03.021
Kuo, 1997, GATA4 transcription factor is required for ventral morphogenesis and heart tube formation, Genes Dev., 11, 1048, 10.1101/gad.11.8.1048
Molkentin, 1997, Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis, Genes Dev., 11, 1061, 10.1101/gad.11.8.1061
Komada, 1999, Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis, Genes Dev., 13, 1475, 10.1101/gad.13.11.1475
Constam, 2000, Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping, Development, 127, 245, 10.1242/dev.127.2.245
Fristrom, 1988, The cellular basis of epithelial morphogenesis. A review, Tissue Cell, 20, 645, 10.1016/0040-8166(88)90015-8
Gutzman, 2008, Formation of the zebrafish midbrain–hindbrain boundary constriction requires laminin-dependent basal constriction, Mech. Dev., 125, 974, 10.1016/j.mod.2008.07.004
Keller, 1992, The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser, Dev. Suppl., 81
Rolo, 2009, Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB, Dev. Biol., 327, 327, 10.1016/j.ydbio.2008.12.009
Skoglund, 2008, Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network, Development, 135, 2435, 10.1242/dev.014704
Keller, 2008, Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore, Philos. Trans. R. Soc. London B Biol. Sci., 363, 1317, 10.1098/rstb.2007.2250
Keller, 1985, The function and mechanism of convergent extension during gastrulation in Xenopus laevis, J. Embyol. Exp. Morph., 89, 185
Keller, 1989, Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis, Dev. Biol., 131, 539, 10.1016/S0012-1606(89)80024-7
Miyamoto, 1985, Formation of the notochord in living ascidian embryos, J. Embryol. Exp. Morphol., 86, 1
Warga, 1990, Cell movements during epiboly and gastrulation in zebrafish, Development, 108, 569, 10.1242/dev.108.4.569
Concha, 1998, Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis, Development, 125, 983, 10.1242/dev.125.6.983
Williams-Masson, 1998, The cellular mechanism of epithelial rearrangement during morphogenesis of the Caenorhabditis elegans dorsal hypodermis, Dev Biol, 204, 263, 10.1006/dbio.1998.9048
Walck-Shannon, 2014, Cell intercalation from top to bottom, Nat. Rev. Mol. Cell Biol., 15, 34, 10.1038/nrm3723
Walck-Shannon, 2015, Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans, Development, 142, 3549
Bertet, 2004, Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation, Nature, 429, 667, 10.1038/nature02590
Nishimura, 2012, Planar cell polarity links axes of spatial dynamics in neural-tube closure, Cell, 149, 1084, 10.1016/j.cell.2012.04.021
Gubb, 1982, A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster, J. Embryol. Exp. Morphol., 68, 37
Mlodzik, 2000, Spiny legs and prickled bodies: new insights and complexities in planar polarity establishment, Bioessays, 22, 311, 10.1002/(SICI)1521-1878(200004)22:4<311::AID-BIES1>3.0.CO;2-J
Adler, 2002, Planar signaling and morphogenesis in Drosophila, Dev. Cell, 2, 525, 10.1016/S1534-5807(02)00176-4
Adler, 2012, The frizzled/stan pathway and planar cell polarity in the Drosophila wing, Curr. Top. Dev. Biol., 101, 1, 10.1016/B978-0-12-394592-1.00001-6
Heisenberg, 2000, Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation, Nature, 405, 76, 10.1038/35011068
Tada, 2000, Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway, Development, 127, 2227, 10.1242/dev.127.10.2227
Wallingford, 2000, Dishevelled controls cell polarity during Xenopus gastrulation, Nature, 405, 81, 10.1038/35011077
Wallingford, 2001, Xenopus dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis, Development, 128, 2581, 10.1242/dev.128.13.2581
Axelrod, 2002, Coupling planar cell polarity signaling to morphogenesis, ScientificWorldJournal, 2, 434, 10.1100/tsw.2002.105
Goodrich, 2011, Principles of planar polarity in animal development, Development, 138, 1877, 10.1242/dev.054080
Wallingford, 2012, Planar cell polarity and the developmental control of cell behavior in vertebrate embryos, Annu. Rev. Cell Dev. Biol., 28, 627, 10.1146/annurev-cellbio-092910-154208
Tissir, 2013, Shaping the nervous system: role of the core planar cell polarity genes, Nat. Rev. Neurosci., 14, 525, 10.1038/nrn3525
Gao, 2012, Wnt regulation of planar cell polarity (PCP), Curr. Top. Dev. Biol., 101, 263, 10.1016/B978-0-12-394592-1.00008-9
Shih, 1992, Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis, Development, 116, 915, 10.1242/dev.116.4.915
Shih, 1992, Cell motility driving mediolateral intercalation in explants of Xenopus laevis, Development, 116, 901, 10.1242/dev.116.4.901
R. Keller, J. Shih. Mediolateral intercalation of mesodermal cells in the xenopus-laevis gastrula. Bellairs, R.E., Sanders, J., Lash, J.W. (Ed), Nato Asi (Advanced Science Institutes) Series Series A Life Sciences, vol. 231 Formation And Differentiation Of Early Embryonic Mesoderm; Nato Advanced Research Workshop, Banff,Alberta, Canada, October 25-27, 1991. Viii + 341p Plenum Press: New York, New York, USA; London, England, Uk. 47-61.
Elul, 1997, Cellular mechanism underlying neural convergence and extension in Xenopus laevis embryos, Dev. Biol., 191, 243, 10.1006/dbio.1997.8711
Kibar, 2001, Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail, Nat. Genet., 28, 251, 10.1038/90081
Murdoch, 2001, Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification, Hum. Mol. Genet., 10, 2593, 10.1093/hmg/10.22.2593
Montcouquiol, 2003, Identification of Vangl2 and Scrb1 as planar polarity genes in mammals, Nature, 423, 173, 10.1038/nature01618
Song, 2010, Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning, Nature, 466, 378, 10.1038/nature09129
Curtin, 2003, Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse, Curr. Biol., 13, 1129, 10.1016/S0960-9822(03)00374-9
Wang, 2006, The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells, J. Neurosci., 26, 2147, 10.1523/JNEUROSCI.4698-05.2005
Hamblet, 2002, Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure, Development, 129, 5827, 10.1242/dev.00164
Wang, 2006, Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation, Development, 133, 1767, 10.1242/dev.02347
Ezan, 2013, Revisiting planar cell polarity in the inner ear, Semin. Cell Dev. Biol., 24, 499, 10.1016/j.semcdb.2013.03.012
Murdoch, 2003, Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse, Hum. Mol. Genet., 12, 87, 10.1093/hmg/ddg014
Lu, 2004, PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates, Nature, 430, 93, 10.1038/nature02677
Kibar, 2007, Mutations in VANGL1 associated with neural-tube defects, N. Engl. J. Med., 356, 1432, 10.1056/NEJMoa060651
Kibar, 2009, Novel mutations in VANGL1 in neural tube defects, Hum. Mutat., 30, E706, 10.1002/humu.21026
Kibar, 2011, Contribution of VANGL2 mutations to isolated neural tube defects, Clin. Genet., 80, 76, 10.1111/j.1399-0004.2010.01515.x
Allache, 2012, Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis, Birth Defects Res. A Clin. Mol. Teratol., 94, 176, 10.1002/bdra.23002
De Marco, 2012, FZD6 is a novel gene for human neural tube defects, Hum. Mutat., 33, 384, 10.1002/humu.21643
Robinson, 2012, Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis, Hum. Mutat., 33, 440, 10.1002/humu.21662
Jiang, 2005, Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells, Curr. Biol., 15, 79, 10.1016/j.cub.2004.12.041
Jessen, 2002, Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements, Nat. Cell Biol., 4, 610, 10.1038/ncb828
Wallingford, 2002, Neural tube closure requires Dishevelled-dependent convergent extension of the midline, Development, 129, 5815, 10.1242/dev.00123
Jenny, 2003, Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling, EMBO J., 22, 4409, 10.1093/emboj/cdg424
Darken, 2002, The planar polarity gene strabismus regulates convergent extension movements in Xenopus, EMBO J., 21, 976, 10.1093/emboj/21.5.976
Goto, 2002, The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus, Dev. Biol., 247, 165, 10.1006/dbio.2002.0673
De Marco, 2011, Human neural tube defects: genetic causes and prevention, Biofactors, 37, 261, 10.1002/biof.170
De Marco, 2014, Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population, Birth Defects Res. A Clin. Mol. Teratol., 10.1002/bdra.23255
Yen, 2009, PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation, Development, 136, 2039, 10.1242/dev.030601
Wong, 1993, Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells, J. Cell Biol., 123, 209, 10.1083/jcb.123.1.209
Yang, 1993, Embryonic mesodermal defects in alpha 5 integrin-deficient mice, Development, 119, 1093, 10.1242/dev.119.4.1093
George, 1993, Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin, Development, 119, 1079, 10.1242/dev.119.4.1079
Imuta, 2014, Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos, Mech. Dev., 132, 44, 10.1016/j.mod.2014.01.004
Harris, 2007, Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects, Birth Defects Res. A Clin. Mol. Teratol., 79, 187, 10.1002/bdra.20333