Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage

PLOS Neglected Tropical Diseases - Tập 9 Số 4 - Trang e0003731
Cristina Herrera1,2, Teresa Escalante1, Mathieu-Benoı̂t Voisin3, Alexandra Rucavado1, Diego Morazán1, Jéssica K. A. Macêdo4, Juan J. Calvete5, Líbia Sanz5, Sussan Nourshargh3, José Marı́a Gutiérrez1, Jay W. Fox4
1Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
2Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
3William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom;
4University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
5Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

JW Fox, 2005, Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases, Toxicon, 45, 969, 10.1016/j.toxicon.2005.02.012

NR Casewell, 2012, On the ancestral recruitment of metalloproteinases into the venom of snakes, Toxicon, 60, 449, 10.1016/j.toxicon.2012.02.006

BG Fry, 2008, Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia), Mol Cell Proteomics, 7, 215, 10.1074/mcp.M700094-MCP200

AM Moura-da-Silva, 1996, Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases: gene duplication and divergence of a common ancestor rather than convergent evolution, J Mol Evol, 43, 263, 10.1007/BF02338834

NR Casewell, 2011, Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes, Mol Biol Evol, 28, 2637, 10.1093/molbev/msr091

NR Casewell, 2014, Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms, Proc Natl Acad Sci U S A, 111, 9205, 10.1073/pnas.1405484111

JJ Calvete, 2005, Snake venom disintegrins: evolution of structure and function, Toxicon, 45, 1063, 10.1016/j.toxicon.2005.02.024

C Baldo, 2010, Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: tissue distribution and <italic>in situ</italic> hydrolysis, PLoS Negl Trop Dis, 4, e727, 10.1371/journal.pntd.0000727

AM Moura-da-Silva, 2008, Collagen binding is a key factor for the hemorrhagic activity of snake venom metalloproteinases, Biochimie, 90, 484, 10.1016/j.biochi.2007.11.009

AK Oliveira, 2010, New insights into the structural elements involved in the skin haemorrhage induced by snake venom metalloproteinases, Thromb Haemost, 104, 485, 10.1160/TH09-12-0855

AF Pinto, 2007, Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain, Arch Biochem Biophys, 457, 41, 10.1016/j.abb.2006.10.010

SM Serrano, 2005, Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor, Biochem J, 391, 69, 10.1042/BJ20050483

SM Serrano, 2006, The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting, J Biol Chem, 281, 39746, 10.1074/jbc.M604855200

SM Serrano, 2007, Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation, FEBS J, 274, 3611, 10.1111/j.1742-4658.2007.05895.x

EN Baramova, 1990, Interaction of hemorrhagic metalloproteinases with human alpha 2-macroglobulin, Biochemistry, 29, 1069, 10.1021/bi00456a032

E Camacho, 2014, Understanding structural and functional aspects of PII snake venom metalloproteinases: characterization of BlatH1, a hemorrhagic dimeric enzyme from the venom of <italic>Bothriechis lateralis</italic>, Biochimie, 101, 145, 10.1016/j.biochi.2014.01.008

T Escalante, 2011, Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases, J Proteomics, 74, 1781, 10.1016/j.jprot.2011.03.026

JM Gutiérrez, 2005, Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage, Toxicon, 45, 997, 10.1016/j.toxicon.2005.02.029

T Nikai, 2000, Primary structure and functional characterization of bilitoxin-1, a novel dimeric P-II snake venom metalloproteinase from <italic>Agkistrodon bilineatus</italic> venom, Arch Biochem Biophys, 378, 6, 10.1006/abbi.2000.1795

EN Baramova, 1989, Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases, Arch Biochem Biophys, 275, 63, 10.1016/0003-9861(89)90350-0

EN Baramova, 1991, Proteolytic digestion of non-collagenous basement membrane proteins by the hemorrhagic metalloproteinase Ht-e from <italic>Crotalus atrox</italic> venom, Biomed Biochim Acta, 50, 763

T Escalante, 2011, Role of collagens and perlecan in microvascular stability: exploring the mechanism of capillary vessel damage by snake venom metalloproteinases, PLoS One, 6, e28017, 10.1371/journal.pone.0028017

A Osaka, 1973, Action of snake venom hemorrhagic principles on isolated glomerular basement membrane, Biochim Biophys Acta, 323, 415, 10.1016/0005-2736(73)90187-9

K Kühn, 1995, Basement membrane (type IV) collagen, Matrix Biol, 14, 439, 10.1016/0945-053X(95)90001-2

K Kühn, 1981, Macromolecular structure of basement membrane collagens, FEBS Lett, 125, 123, 10.1016/0014-5793(81)81012-5

R Timpl, 1981, A network model for the organization of type IV collagen molecules in basement membranes, Eur J Biochem, 120, 203, 10.1111/j.1432-1033.1981.tb05690.x

PD Yurchenco, 2004, Basement membrane assembly, stability and activities observed through a developmental lens, Matrix Biol, 22, 521, 10.1016/j.matbio.2003.10.006

T Escalante, 2009, Wound exudate as a proteomic window to reveal different mechanisms of tissue damage by snake venom toxins, J Proteome Res, 8, 5120, 10.1021/pr900489m

A Rucavado, 2011, Proteomics of wound exudate in snake venom-induced pathology: search for biomarkers to assess tissue damage and therapeutic success, J Proteome Res, 10, 1987, 10.1021/pr101208f

JM Gutiérrez, 1995, Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake <italic>Bothrops asper</italic> (terciopelo), Toxicon, 33, 19, 10.1016/0041-0101(94)00138-X

L Watanabe, 2003, Amino acid sequence and crystal structure of BaP1, a metalloproteinase from <italic>Bothrops asper</italic> snake venom that exerts multiple tissue-damaging activities, Protein Sci, 12, 2273, 10.1110/ps.03102403

UK Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0

WJ Wang, 2004, A novel P-I class metalloproteinase with broad substrate-cleaving activity, agkislysin, from <italic>Agkistrodon acutus</italic> venom, Biochem Biophys Res Commun, 324, 224, 10.1016/j.bbrc.2004.09.031

JM Gutiérrez, 1985, Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom, Toxicon, 23, 887, 10.1016/0041-0101(85)90380-0

J Durban, 2011, Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing, BMC Genomics, 12, 259, 10.1186/1471-2164-12-259

A Rucavado, 1995, Local tissue damage induced by BaP1, a metalloproteinase isolated from <italic>Bothrops asper</italic> (Terciopelo) snake venom, Exp Mol Pathol, 63, 186, 10.1006/exmp.1995.1042

SV Costes, 2004, Automatic and quantitative measurement of protein-protein colocalization in live cells, Biophys J, 86, 3993, 10.1529/biophysj.103.038422

PD Yurchenco, 2009, Developmental and pathogenic mechanisms of basement membrane assembly, Curr Pharm Des, 15, 1277, 10.2174/138161209787846766

DB Gould, 2006, Role of COL4A1 in small-vessel disease and hemorrhagic stroke, N Engl J Med, 354, 1489, 10.1056/NEJMoa053727

N Jiménez, 2008, Skin pathology induced by snake venom metalloproteinase: acute damage, revascularization, and re-epithelization in a mouse ear model, J Invest Dermatol, 128, 2421, 10.1038/jid.2008.118

JM Gutiérrez, 1995, Skeletal muscle necrosis and regeneration after injection of BaH1, a hemorrhagic metalloproteinase isolated from the venom of the snake <italic>Bothrops asper</italic> (Terciopelo), Exp Mol Pathol, 62, 28, 10.1006/exmp.1995.1004