Tin carbide monolayers decorated with alkali metal atoms for hydrogen storage

International Journal of Hydrogen Energy - Tập 47 - Trang 41329-41335 - 2022
Alma L. Marcos-Viquez1, A. Miranda1, Miguel Cruz-Irisson1, Luis A. Pérez2
1Instituto Politécnico Nacional, ESIME-Culhuacán, Av. Santa Ana 1000, C.P. 04440, Ciudad de México, Mexico
2Instituto de Física, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, Mexico

Tài liệu tham khảo

Abe, 2019, Hydrogen energy, economy and storage: review and recommendation, Int J Hydrogen Energy, 44, 15072, 10.1016/j.ijhydene.2019.04.068 Rosa, 2001, The present, past, and future contributions to global warming of CO2 emissions from fuels, Clim Change, 48, 289, 10.1023/A:1010720931557 Schlapbach, 2001, Hydrogen-storage materials for mobile applications, Nature, 414, 353, 10.1038/35104634 Kovač, 2021, Hydrogen in energy transition: a review, Int J Hydrogen Energy, 46, 10016, 10.1016/j.ijhydene.2020.11.256 Suh, 2012, Hydrogen storage in metal–organic frameworks, Chem Rev, 112, 782, 10.1021/cr200274s Dawood, 2020, Hydrogen production for energy: an overview, Int J Hydrogen Energy, 45, 3847, 10.1016/j.ijhydene.2019.12.059 Niaz, 2015, Hydrogen storage: materials, methods and perspectives, Renew Sustain Energy Rev, 50, 457e69, 10.1016/j.rser.2015.05.011 Ren, 2017, Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review, Int J Hydrogen Energy, 42, 289, 10.1016/j.ijhydene.2016.11.195 Lodhi, 1989, How safe is the storage of liquid hydrogen?, Int J Hydrogen Energy, 14, 35, 10.1016/0360-3199(89)90154-7 Moradi, 2019, Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis, Int J Hydrogen Energy, 44, 12254e69, 10.1016/j.ijhydene.2019.03.041 Boateng, 2020, Recent advances in nanomaterial-based solid-state hydrogen storage, Mater Today Adv, 6, 100022, 10.1016/j.mtadv.2019.100022 Liu, 2017, Porous two-dimensional materials for energy applications: innovations and challenges, Mater Today Energy, 6, 79e95 Yu, 2017, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog Mater Sci, 88, 1e48, 10.1016/j.pmatsci.2017.03.001 Jena, 2011, Materials for hydrogen storage: past, present, and future, J Phys Chem Lett, 2, 206, 10.1021/jz1015372 Zhou, 2010, Electric field enhanced hydrogen storage on polarizable materials substrates, Proc Natl Acad Sci U S A, 107, 2801, 10.1073/pnas.0905571107 Tozzini, 2013, Prospects for hydrogen storage in graphene, Phys Chem Chem Phys, 15, 80, 10.1039/C2CP42538F Rangel, 2011, Hydrogen adsorption around lithium atoms anchored on graphene vacancies, Int J Hydrogen Energy, 36, 13657, 10.1016/j.ijhydene.2011.08.023 Nachimuthu, 2014, Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study, Carbon, 73, 132, 10.1016/j.carbon.2014.02.048 Choudhary, 2016, First principles calculations of hydrogen storage on Cu and Pd-decorated graphene, Int J Hydrogen Energy, 41, 17652, 10.1016/j.ijhydene.2016.07.147 Susilo, 2019, The effect of boron dopant on hydrogenated graphene for hydrogen storage application, IOP Conf Ser Mater Sci Eng, 541, 10.1088/1757-899X/541/1/012004 Arellano, 2021, Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: a first-principles study, Int J Hydrogen Energy, 46, 20266, 10.1016/j.ijhydene.2020.03.078 Arellano, 2021, Ab initio study of hydrogen storage on metal-decorated GeC monolayers, Int J Hydrogen Energy, 46, 29261, 10.1016/j.ijhydene.2021.04.135 Şahin, 2009, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations, Phys Rev B, 80, 155453, 10.1103/PhysRevB.80.155453 Lü, 2012, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study, J Mater Chem, 22, 10062, 10.1039/c2jm30915g Mogulkoc, 2017, First principle and tight-binding study of strained SnC, J Chem Phys Solids, 111, 458, 10.1016/j.jpcs.2017.08.036 Hoat, 2020, Structural and electronic properties of chemically functionalized SnC monolayer: a first principles study, Mater Res Express, 7, 10.1088/2053-1591/ab5d71 Marcos-Viquez, 2021, Gas adsorption enhancement on transition-metal-decorated tin carbide monolayers, Mater Lett, 298, 130030, 10.1016/j.matlet.2021.130030 Soler, 2002, The SIESTA method for ab initio order-N materials simulation, J Phys Condens Matter, 14, 2745, 10.1088/0953-8984/14/11/302 Perdew, 1996, Generalized gradient approximation made simple, Phys Rev Lett, 77, 3865, 10.1103/PhysRevLett.77.3865 Troullier, 1991, Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization, Phys Rev B, 43, 8861, 10.1103/PhysRevB.43.8861 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys Rev B, 13, 5188, 10.1103/PhysRevB.13.5188 Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J Comput Chem, 27, 1787, 10.1002/jcc.20495 Fonseca Guerra, 2004, Voronoi deformation density (VDD) charges: assessment of the Mülliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis, J Comput Chem, 25, 189, 10.1002/jcc.10351 Zhang, 2018, Performance of various density-functional approximations for cohesive properties of 64 bulk solids, New J Phys, 20, 10.1088/1367-2630/aac7f0 Ireta, 2004, On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality, J Phys Chem, 108, 5692, 10.1021/jp0377073 Legrain, 2015, Amorphous (glassy) carbon, a promising material for sodium ion battery anodes: a combined first-principles and experimental study, J Phys Chem C, 119, 13496, 10.1021/acs.jpcc.5b03407 Ertekin, 2012, Insulator-to-Metal transition in selenium-hyperdoped silicon: observation and origin, Phys Rev Lett, 108, 10.1103/PhysRevLett.108.026401 García, 2020, SIESTA: recent developments and applications, J Chem Phys, 152, 204108, 10.1063/5.0005077 Butt, 2021, Monolayer SnC as anode material for Na ion batteries, Comput Mater Sci, 197, 110617, 10.1016/j.commatsci.2021.110617 Kittel, 2004 2015