Tin-assisted growth of all-inorganic perovskite nanoplatelets with controllable morphologies and complementary emissions

CrystEngComm - Tập 21 Số 14 - Trang 2388-2397
Yanxi Ding1,2,3,4, Tan Li1,2,3,4, Xiaoyun Li1,2,3,4, Emmanuel Acheampong Tsiwah1,2,3,4, Chengzhen Liu1,2,3,4, Peng Gao5,1,6,7, Tao Zeng8,9,1,10, Yunxia Chen8,11,12,1,10, Xiujian Zhao1,2,3,4, Yi Xie1,2,3,4
1P. R. China
2State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
3Wuhan 430070
4Wuhan University of Technology
5Laboratory of Advanced Functional Materials, Xiamen Institute of Rare-earth Materials, Chinese Academy of Science, No 1300 Jimei Road, Jimei District, Xiamen, Fujian, P.R. China
6Xiamen
7Xiamen Institute of Rare-earth Materials, Chinese Academy of Science
8Jingdezhen
9Jingdezhen Ceramic Institute (Xianghu Campus)
10School of Materials Science and Engineering, Jingdezhen Ceramic Institute (Xianghu Campus), Xianghu Road, Jingdezhen, Jiangxi 333403, P.R. China
11National Engineering Research Center for Domestic & Building Ceramics
12National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic Institute (Xinchang Campus), Taoyang Southern Road, Jingdezhen, Jiangxi, PR China

Tóm tắt

The Sn4+-assisted growth of CsPbBr3 nanoplatelets with the quantum confinement effect enables controllable morphologies and formation of dual photoluminescence emission.

Từ khóa


Tài liệu tham khảo

Zhou, 2014, Science, 345, 542, 10.1126/science.1254050

Yang, 2015, Science, 348, 1234, 10.1126/science.aaa9272

Gao, 2014, Energy Environ. Sci., 7, 2448, 10.1039/C4EE00942H

Akkerman, 2016, Nat. Energy, 2, 16194, 10.1038/nenergy.2016.194

Swarnkar, 2016, Science, 354, 92, 10.1126/science.aag2700

Ha, 2017, Chem. Sci., 8, 2522, 10.1039/C6SC04474C

Zhu, 2015, Nat. Mater., 14, 636, 10.1038/nmat4271

Wang, 2017, Adv. Funct. Mater., 27, 1605088, 10.1002/adfm.201605088

Ramasamy, 2016, Chem. Commun., 52, 2067, 10.1039/C5CC08643D

Liu, 2018, Small, 14, 1801460, 10.1002/smll.201801460

Zhang, 2018, ACS Cent. Sci., 4, 668, 10.1021/acscentsci.8b00201

Xu, 2017, J. Am. Chem. Soc., 139, 5660, 10.1021/jacs.7b00489

Wang, 2019, Appl. Surf. Sci., 465, 607, 10.1016/j.apsusc.2018.09.215

Huang, 2016, Chem. Sci., 7, 5699, 10.1039/C6SC01758D

Li, 2016, Adv. Funct. Mater., 26, 2435, 10.1002/adfm.201600109

Palazon, 2016, Chem. Mater., 28, 2902, 10.1021/acs.chemmater.6b00954

Pietryga, 2016, Chem. Rev., 116, 10513, 10.1021/acs.chemrev.6b00169

Zhang, 2016, Nano Energy, 30, 511, 10.1016/j.nanoen.2016.10.039

Lin, 2018, Nature, 562, 245, 10.1038/s41586-018-0575-3

Cao, 2018, Nature, 562, 249, 10.1038/s41586-018-0576-2

Chen, 2018, Nature, 561, 88, 10.1038/s41586-018-0451-1

Leng, 2018, Adv. Funct. Mater., 28, 1704446, 10.1002/adfm.201704446

Yu, 2018, Adv. Funct. Mater., 28, 1800248, 10.1002/adfm.201800248

Ling, 2016, Adv. Mater., 28, 305, 10.1002/adma.201503954

Wei, 2016, Adv. Funct. Mater., 26, 4797, 10.1002/adfm.201601054

Li, 2018, Angew. Chem., 130, 13338, 10.1002/ange.201807674

Kim, 2015, ACS Appl. Mater. Interfaces, 7, 25007, 10.1021/acsami.5b09084

Ravi, 2016, ACS Energy Lett., 1, 665, 10.1021/acsenergylett.6b00337

Tsiwah, 2017, CrystEngComm, 19, 7041, 10.1039/C7CE01749A

Protesescu, 2015, Nano Lett., 15, 3692, 10.1021/nl5048779

Akkerman, 2015, J. Am. Chem. Soc., 137, 10276, 10.1021/jacs.5b05602

Liu, 2016, J. Am. Chem. Soc., 138, 14954, 10.1021/jacs.6b08085

Nedelcu, 2015, Nano Lett., 15, 5635, 10.1021/acs.nanolett.5b02404

Guhrenz, 2016, Chem. Mater., 28, 9033, 10.1021/acs.chemmater.6b03980

Bekenstein, 2015, J. Am. Chem. Soc., 137, 16008, 10.1021/jacs.5b11199

Liang, 2016, ACS Appl. Mater. Interfaces, 8, 28824, 10.1021/acsami.6b08528

Akkerman, 2016, J. Am. Chem. Soc., 138, 1010, 10.1021/jacs.5b12124

Chen, 2016, Langmuir, 32, 7582, 10.1021/acs.langmuir.6b02035

Li, 2013, J. Am. Chem. Soc., 135, 4664, 10.1021/ja400472m

Yang, 2009, J. Phys. Chem. C, 113, 19091, 10.1021/jp907285f

Lv, 2016, Nanoscale, 8, 13589, 10.1039/C6NR03428D

Tyagi, 2015, J. Phys. Chem. Lett., 6, 1911, 10.1021/acs.jpclett.5b00664

Ji, 2018, J. Phys. Chem. C, 122, 23217, 10.1021/acs.jpcc.8b08295

Parobek, 2016, Nano Lett., 16, 7376, 10.1021/acs.nanolett.6b02772

Liu, 2017, ACS Nano, 11, 2239, 10.1021/acsnano.6b08747

Zou, 2017, J. Am. Chem. Soc., 139, 11443, 10.1021/jacs.7b04000

Zhang, 2015, J. Am. Chem. Soc., 137, 9230, 10.1021/jacs.5b05404

Swarnkar, 2015, Angew. Chem., Int. Ed., 54, 15424, 10.1002/anie.201508276

Shamsi, 2016, J. Am. Chem. Soc., 138, 7240, 10.1021/jacs.6b03166

Akkerman, 2017, Nano Lett., 17, 1924, 10.1021/acs.nanolett.6b05262

Wu, 2017, Nano Lett., 17, 5799, 10.1021/acs.nanolett.7b02896

Yu, 2016, Nano Lett., 16, 7530, 10.1021/acs.nanolett.6b03331

Dang, 2017, ACS Nano, 11, 2124, 10.1021/acsnano.6b08324

Liang, 2017, J. Am. Chem. Soc., 139, 14009, 10.1021/jacs.7b07949

Xie, 2013, ACS Nano, 7, 7352, 10.1021/nn403035s

Sichert, 2015, Nano Lett., 15, 6521, 10.1021/acs.nanolett.5b02985