Time–space trade-offs for longest common extensions

Journal of Discrete Algorithms - Tập 25 - Trang 42-50 - 2014
Philip Bille1, Inge Li Gørtz1, Benjamin Sach2, Hjalte Wedel Vildhøj1
1Technical University of Denmark, DTU Compute, Denmark#TAB#
2University of Warwick, Department of Computer Science, United Kingdom#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aho, 1975, Efficient string matching: An aid to bibliographic search, Commun. ACM, 18, 10.1145/360825.360855

Allouche, 2003, Palindrome complexity, Theoret. Comput. Sci., 292, 9, 10.1016/S0304-3975(01)00212-2

Amir, 2004, Faster algorithms for string matching with k mismatches, J. Algorithms, 50, 257, 10.1016/S0196-6774(03)00097-X

Bille, 2012, Time–space trade-offs for longest common extensions, 293

Breslauer, 1995, Finding all periods and initial palindromes of a string in parallel, Algorithmica, 14, 355, 10.1007/BF01294132

Brodal, 2012, On space efficient two dimensional range minimum data structures, Algorithmica, 63, 815, 10.1007/s00453-011-9499-0

Colbourn, 2000, Quorums from difference covers, Inf. Process. Lett., 75, 9, 10.1016/S0020-0190(00)00080-6

Cole, 2002, Approximate string matching: A simpler faster algorithm, SIAM J. Comput., 31, 1761, 10.1137/S0097539700370527

Dietzfelbinger, 1990, A new universal class of hash functions and dynamic hashing in real time, vol. 443, 6

Fischer, 2006, Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE, vol. 4009, 36

Gąsieniec, 2005, Space efficient search for maximal repetitions, Theoret. Comput. Sci., 339, 35, 10.1016/j.tcs.2005.01.006

Gusfield, 1997

Gusfield, 2004, Linear time algorithms for finding and representing all the tandem repeats in a string, J. Comput. Syst. Sci., 69, 525, 10.1016/j.jcss.2004.03.004

Harel, 1984, Fast algorithms for finding nearest common ancestors, SIAM J. Comput., 13, 338, 10.1137/0213024

Ilie, 2010, The longest common extension problem revisited and applications to approximate string searching, J. Discrete Algorithms, 8, 418, 10.1016/j.jda.2010.08.004

Jeuring, 1994, The derivation of on-line algorithms, with an application to finding palindromes, Algorithmica, 11, 146, 10.1007/BF01182773

Kärkkäinen, 2006, Linear work suffix array construction, J. ACM, 53, 918, 10.1145/1217856.1217858

Karp, 1987, Efficient randomized pattern-matching algorithms, IBM J. Res. Dev., 31, 249, 10.1147/rd.312.0249

Kolpakov, 2008, Searching for gapped palindromes, vol. 5029, 18

Landau, 1998, Incremental string comparison, SIAM J. Comput., 27, 557, 10.1137/S0097539794264810

Landau, 2001, An algorithm for approximate tandem repeats, J. Comput. Biol., 8, 1, 10.1089/106652701300099038

Landau, 1989, Fast parallel and serial approximate string matching, J. Algorithms, 10, 157, 10.1016/0196-6774(89)90010-2

Lu, 2007, The human genome-wide distribution of DNA palindromes, Funct. Integr. Genomics, 7, 221, 10.1007/s10142-007-0047-6

Main, 1984, An O(nlogn) algorithm for finding all repetitions in a string, J. Algorithms, 5, 422, 10.1016/0196-6774(84)90021-X

Manacher, 1975, A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string, J. ACM, 22, 346, 10.1145/321892.321896

Matsubara, 2009, Efficient algorithms to compute compressed longest common substrings and compressed palindromes, Theoret. Comput. Sci., 410, 900, 10.1016/j.tcs.2008.12.016

Miltersen, 1999, Cell probe complexity—A survey

Myers, 1986, An O(ND) difference algorithm and its variations, Algorithmica, 1, 251, 10.1007/BF01840446

Puglisi, 2008, Space–time tradeoffs for Longest-Common-Prefix array computation, vol. 5369, 124

Ružić, 2008, Uniform deterministic dictionaries, ACM Trans. Algorithms, 4, 1, 10.1145/1328911.1328912