Time-series maps of aboveground biomass in dipterocarps forests of Malaysia from PALSAR and PALSAR-2 polarimetric data

Springer Science and Business Media LLC - Tập 13 - Trang 1-19 - 2018
Hamdan Omar1, Muhamad Afizzul Misman1
1Geoinformation Programme, Division of Forestry and Environment, Forest Research Institute Malaysia, Kepong, Malaysia

Tóm tắt

Malaysia typically suffers from frequent cloud cover, hindering spatially consistent reporting of deforestation and forest degradation, which limits the accurate reporting of carbon loss and CO2 emissions for reducing emission from deforestation and forest degradation (REDD+) intervention. This study proposed an approach for accurate and consistent measurements of biomass carbon and CO2 emissions using a single L-band synthetic aperture radar (SAR) sensor system. A time-series analysis of aboveground biomass (AGB) using the PALSAR and PALSAR-2 systems addressed a number of critical questions that have not been previously answered. A series of PALSAR and PALSAR-2 mosaics over the years 2007, 2008, 2009, 2010, 2015 and 2016 were used to (i) map the forest cover, (ii) quantify the rate of forest loss, (iii) establish prediction equations for AGB, (iv) quantify the changes of carbon stocks and (v) estimate CO2 emissions (and removal) in the dipterocarps forests of Peninsular Malaysia. This study found that the annual rate of deforestation within inland forests in Peninsular Malaysia was 0.38% year−1 and subsequently caused a carbon loss of approximately 9 million Mg C year−1, which is equal to emissions of 33 million Mg CO2 year−1, within the ten-year observation period. Spatially explicit maps of AGB over the dipterocarps forests in the entire Peninsular Malaysia were produced. The RMSE associated with the AGB estimation was approximately 117 Mg ha−1, which is equal to an error of 29.3% and thus an accuracy of approximately 70.7%. The PALSAR and PALSAR-2 systems offer a great opportunity for providing consistent data acquisition, cloud-free images and wall-to-wall coverage for monitoring since at least the past decade. We recommend the proposed method and findings of this study be considered for MRV in REDD+ implementation in Malaysia.

Tài liệu tham khảo

FAO. Forest resource assessment 2010. Rome: Food and Agricultural Organization of the United Nations; 2012. Thapa RB, Motohka T, Watanabe M, Shimada M. Time-series maps of aboveground carbon stocks in the forests of central Sumatra. Carbon Balance Manag. 2015;10:23. Reducing Emission from Deforestation and Forest Degradation: http://www.un-redd.org. Accessed 21 Jan 2018. Pedro RV, Wheeler J, Louis V, Tansey K, Balzter H. Quantifying forest biomass carbon stocks from space. Curr For Rep. 2017;3:1–18. Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories; prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors. Hayama: Japan Institute for Global Environmental Strategies; 2006. Sessa R, Dolman H, editors. Terrestrial essential climate variables for climate change assessment, mitigation and adaptation; FAO GTOS-52. Rome: FAO; 2008. Gibbs HK, Brown S, O’Niles J, Foley JA. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett. 2007;2:045023. Angelsen A, Brown S, Loisel C, Peskett C, Streck C, Zarin D. Reducing emission from deforestation and degradation (REDD): an options assessment report; a report prepared for the government of Norway. Washington, DC: Meridian Institute; 2009. p. 100. Holmgren P. Role of satellite remote sensing in REDD; UN-REDD Programme; MRV Working Paper 1; UN FAO: Rome, 2008. Asner GP. Cloud cover in Landsat observations of the Brazilian Amazon. Int J Remote Sens. 2001;22:3855–62. Hamdan O, Muhamad Afizzul M, Abd Rahman K. Synergetic of PALSAR-2 and Sentinel-1A SAR polarimetry for retrieving aboveground biomass in dipterocarp forest of Malaysia. Appl Sci. 2017;7:675. Berninger A, Lohberger S, Stängel M, Siegert F. SAR-based estimation of above-ground biomass and its changes in tropical forests of Kalimantan using L- and C-Band. Remote Sens. 2018;10:831. Antropov O, Rauste Y, Häme T, Praks J. Polarimetric ALOS PALSAR time series in mapping biomass of Boreal Forests. Remote Sens. 2017;9:999. Hamdan O, Mohd Hasmadi I, Khali Aziz H, Norizah K, Helmi Zulhaidi MS. Determining L-band saturation level for aboveground biomass assessment of dipterocarp forests in peninsular Malaysia. J Trop For Sci. 2015;27(3):388–99. Proisy C, Mougin E, Fromard F, Karam MA. Interpretation of polarimetric radar signatures of mangrove forests. Remote Sens Environ. 2000;71:56–66. Simard M, DeGrandi G, Saatchi S, Mayaux P. Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier. Int J Remote Sens. 2002;23:1461–74. Lucas R, Moghaddam M, Cronin N. Microwave scattering from mixed-species forests, Queensland, Australia. IEEE Trans Geosci Remote Sens. 2004;42:2142–59. Hamdan O, Khali Aziz H, Abd Rahman K. Remotely sensed L-Band SAR data for tropical forest biomass estimation. J Trop For Sci. 2011;23:318–27. Thapa RB, Motohka T, Watanabe M, Shimada M. Potential of high-resolution ALOS–PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens Environ. 2015;160:122–33. Simard M, Hensley S, Lavalle M, Dubayah R, Pinto N, Hofton M. An empirical assessment of temporal decorrelation using the uninhabited aerial vehicle synthetic aperture radar over forested landscapes. Remote Sens. 2012;4:975–86. Forestry Department Peninsular Malaysia (FDPM). Annual Report 2014. Kuala Lumpur: Forestry Department Peninsular Malaysia; 2015. Ake R. Interpretation Guide for ALOS PALSAR/ALOS-2 PALSAR-2 global 25 m mosaic data. http://www.gfoi.org/wp-content/uploads/2016/10. Accessed 14 Aug 2018. Motohka T, Kankaku Y, Suzuki S. Advanced land observing Satellite-2 (ALOS-2) and its follow-on L-band SAR mission. In: 2017 IEEE Radar Conference (RadarConf), Seattle. 2017: 0953-56. Sarker M, Rahman L, Janet N, Baharin A, Busu I, Alias AR. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS J Photogramm Remote Sens. 2012;69:146–66. Walker SM, Pearson TRH, Casarim FM, Harris N, Petrova S, Grais A, Swails E, Netzer M, Goslee KM, Brown S. Standard operating procedures for terrestrial carbon measurement: version 2014. Little Rock: Winrock International; 2012. Chave J, Maxime RE, Alberto B, Chidumayo E, Matthew SC, Welington BCD, Alvaro D, Tron E, Philip MF, Rosa CG, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 2014;20:3177–90. McLachlan GJ, Do KA, Christophe A. Analyzing microarray gene expression data. Hoboken: Wiley; 2004. Liesenberg V, Gloaguen R. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil. Int J Appl Earth Obs Geoinf. 2013;21:122–35. Böttcher H, Eisbrenner K, Fritz S, Kindermann G, Kraxner F, McCallum I, Obersteiner M. An assessment of monitoring requirements and costs of ‘Reduced Emissions from Deforestation and Degradation’. Carbon Balance Manag. 2009;4:7. Kissinger G, Herold M, De Sy V. Drivers of deforestation and forest degradation: a synthesis report for REDD+ policymakers. Vancouver: Lexeme Consulting; 2012. Hosonuma N, Herold M, De Sy V, De Fries RS, Brockhaus M, Verchot L, Angelsen A, Romijn E. An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett. 2012;7:044009. Lucas R, Armston J, Fairfax R, Fesham R, Accad A, Carreiras J, Kelley J, Bunting P, Clewley D, Bray S, et al. An evaluation of the ALOS PALSAR L-band backscatter—aboveground biomass relationship Queensland, Australia: impacts of surface moisture condition and vegetation structure. IEEE J Sel Top Appl Earth Obs Remote Sens. 2010;3:576–93. Nathan T, Lindsay L, William S, Meng Z. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 2016;8:236. Quinones MJ, Hoekman DH. Exploration of factors limiting biomass estimation by polarimetric radar in tropical forests. IEEE Trans Geosci Remote Sens. 2004;42:86–104. Watanabe M, Shimada M, Rosenqvist A, Tadono T, Matsuoka M, Romshoo SA, Ohta K, Furuta R, Nakamura K, Moriyama T. Forest structure dependency of the relation between L-band σ0 and biophysical parameters. IEEE Trans Geosci Remote Sens. 2006;44:3154–65. Guo Z, Ni W, Sun G. Analysis of the effect of crown structure changes on backscattering coefficient using modelling and SAR data. IEEE Trans Geosci Remote Sens. 2009;4:386–9. Reiche J, Souza CM, Hoekman DH, Verbesselt J, Persaud H, Martin H. Feature level fusion of multi-temporal ALOS PALSAR and Landsat data for mapping and monitoring of tropical deforestation and forest degradation. J Sel Top Appl Earth Obs Remote Sens. 2013;6(5):2159–73. Milisavljević N, et al. Estimation of crop extent using multi-temporal PALSAR data. In: IEEE International Geoscience and Remote Sensing Symposium; 2012. pp. 5943–46. Abdul Rashid AM, Shamsudin I, Ismail P, Fletcher SC. The Role of FRIM in addressing climate-change issues. Research Pamphlet No. 128. Kepong: Forest Research Institute Malaysia, 2009.