Time series aggregation, disaggregation, and long memory

Dmitrij Celov1, Remigijus Leipus1, Anne Philippe2
1Vilnius Institute of Mathematics and Informatics
2Laboratoire de Mathématiques Jean Leray

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1972).

N. K. Bary, A Treatise on Trigonometric Series, Vol. I, Pergamon Press, Oxford (1964).

T. T. Chong, The polynomial aggregated AR(1) model, Econometrics Journal, 9, 98–122 (2006).

V. Dacunha-Castelle and G. Oppenheim, Mixtures, aggregations and long memory, Université de Paris-Sud, Mathématiques, Preprint 2001-72 (2001).

V. Dacunha-Castelle and L. Fermin, Disaggregation of long memory processes on C ∞ class, Electronic Communications in Probability, 11, 35–44 (2006).

W. Feller, An Introduction to Probability Theory and its Applications, vol. II, second edn. Wiley, New York (1971).

C. W. J. Granger, Long memory relationships and the aggregation of dynamic models, J. Econometrics, 14, 227–238 (1980).

J. G. Haubrich and A. W. Lo, The sources and nature of long-term dependence in the business cycle, Econometric Rev. (Fed. Reserve Bank Cleveland, Q II), 37, 15–30 (2001).

R. Leipus, G. Oppenheim, A. Philippe, and M.-C. Viano, Orthogonal series density estimation in a disaggregation scheme, J. Statist. Plann. Inference, 136, 2547–2571 (2006).

G. Oppenheim and M.-C. Viano, Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: some convergence results, J. Time Series Analysis, 25, 335–350 (2004).

P. Zaffaroni, Contemporaneous aggregation of linear dynamic models in large economies, J. Econometrics, 120, 75–102 (2004).