Time-sensitive autonomous architectures

Springer Science and Business Media LLC - Tập 59 - Trang 568-608 - 2023
Donato Ferraro1,2, Luca Palazzi1,2, Federico Gavioli2, Michele Guzzinati3, Andrea Bernardi3, Benjamin Rouxel1,2, Paolo Burgio2, Marco Solieri1
1Minerva Systems, Modena, Italy
2Department of Physics, Informatics and Mathematics, Università degli studi di Modena e Reggio Emilia, Modena, Italy
3Hipert, Modena, Italy

Tóm tắt

Autonomous and software-defined vehicles (ASDVs) feature highly complex systems, coupling safety-critical and non-critical components such as infotainment. These systems require the highest connectivity, both inside the vehicle and with the outside world. An effective solution for network communication lies in Time-Sensitive Networking (TSN) which enables high-bandwidth and low-latency communications in a mixed-criticality environment. In this work, we present Time-Sensitive Autonomous Architectures (TSAA) to enable TSN in ASDVs. The software architecture is based on a hypervisor providing strong isolation and virtual access to TSN for virtual machines (VMs). TSAA latest iteration includes an autonomous car controlled by two Xilinx accelerators and a multiport TSN switch. We discuss the engineering challenges and the performance evaluation of the project demonstrator. In addition, we propose a Proof-of-Concept design of virtualized TSN to enable multiple VMs executing on a single board taking advantage of the inherent guarantees offered by TSN.

Tài liệu tham khảo

Alderisi G, Caltabiano A, Vasta G et al (2012) Simulative assessments of IEEE 802.1 Ethernet AVB and time-triggered Ethernet for advanced driver assistance systems and in-car infotainment. https://doi.org/10.1109/VNC.2012.6407430 AMD Xilinx (2020) PetaLinux tools documentation reference guide (UG1144). https://docs.xilinx.com/r/2020.2-English/ug1144-petalinux-tools-reference-guide AMD Xilinx (2022a) Vivado ML overview. https://www.xilinx.com/products/design-tools/vivado.html AMD Xilinx (2022b) Zynq UltraScale+ MPSoC—product tables and product selection guide. https://docs.xilinx.com/v/u/en-US/zynq-ultrascale-plus-product-selection-guide Andreozzi M, Shirasat G (2022) High-performance real-time systems design from cloud to embedded edge. EasyChair Preprint no. 8064 Barham P, Dragovic B, Fraser K et al (2003) Xen and the art of virtualization. SIGOPS Oper Syst Rev 37(5):164–177. https://doi.org/10.1145/1165389.945462 Biondi A, Casini D, Cicero G et al (2021) Sphere: a multi-SoC architecture for next-generation cyber-physical systems based on heterogeneous platforms. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3080842 Borgioli N, Zini M, Casini D et al (2022) An I/O virtualization framework with I/O-related memory contention control for real-time systems. IEEE Trans Comput Aided Des Integr Circuits Syst. https://doi.org/10.1109/TCAD.2022.3202434 Boutin V, Hannart A, Essaidi A et al (2021) Offloading autonomous vehicle machine learning algorithms to the 5G edge: a proof of concept implementation. In: 2021 IEEE 4th 5G World Forum (5GWF). pp 269–274. https://doi.org/10.1109/5GWF52925.2021.00054 Breaban G, Koedam M, Stuijk S et al (2016) Virtualization and emulation of a can device on a multi-processor system on chip. In: 2016 5th Mediterranean conference on embedded computing (MECO). pp 41–46. https://doi.org/10.1109/MECO.2016.7525767 Brilli G, Burgio P, Bertogna M (2018) Convolutional neural networks on embedded automotive platforms: a qualitative comparison. In: 2018 international conference on high performance computing & simulation, HPCS 2018, Orleans, France, July 16–20, 2018. IEEE, pp 496–499. https://doi.org/10.1109/HPCS.2018.00084 Brunner S, Roder J, Kucera M et al (2017) Automotive E/E-architecture enhancements by usage of ethernet TSN. In: 2017 13th workshop on intelligent solutions in embedded systems (WISES). pp 9–13. https://doi.org/10.1109/WISES.2017.7986925 Cai Y, Xu W, Zhang F (2021) ikd-Tree: an incremental KD tree for robotic applications. arXiv Preprint. https://doi.org/10.48550/arXiv.2102.10808 Caruso B, Leonardi L, Bello LL et al (2021) Experimental assessment of TSN support in heterogeneous platforms with virtualization for automotive applications. In: 2021 AEIT international conference on electrical and electronic technologies for automotive (AEIT AUTOMOTIVE). pp 1–5. https://doi.org/10.23919/AEITAUTOMOTIVE52815.2021.9662829 Čech M, Beltman AJ, Ozols K (2022) Digital twins and AI in smart motion control applications. In: 2022 IEEE 27th international conference on emerging technologies and factory automation (ETFA). pp 1–7. https://doi.org/10.1109/ETFA52439.2022.9921533 Cloud Native Computing Foundation (2014) Overview | kubernetes. https://kubernetes.io/docs/concepts/overview/ Corrigan S (2016) Introduction to the controller area network (CAN). Technical report, Texas Instruments. https://www.ti.com/lit/pdf/sloa101 Coulter RC (1992) Implementation of the pure pursuit path tracking algorithm. Technical report, Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA. https://www.ri.cmu.edu/publications/implementation-of-the-pure-pursuit-path-tracking-algorithm/ Ding P, Liu D, Shen Y et al (2022) Edge-to-cloud intelligent vehicle-infrastructure based on 5G time-sensitive network integration. In: 2022 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB). pp 1–5. https://doi.org/10.1109/BMSB55706.2022.9828687 Dong Y, Yang X, Li J et al (2012) High performance network virtualization with SR-IOV. J Parallel Distrib Comput 72(11):1471–1480. https://doi.org/10.1016/j.jpdc.2012.01.020 Dosovitskiy A, Ros G, Codevilla F et al (2017) CARLA: an open urban driving simulator. In: Proceedings of the 1st annual conference on robot learning. pp 1–16. https://doi.org/10.48550/arXiv.1711.03938 Dugan J, Estabrook J, Ferbuson J et al (2016) iPerf—the TCP, UDP and SCTP network bandwidth measurement tool. https://iperf.fr/ eProsima (2019) ROS 2 using Fast DDS middleware. https://fast-dds.docs.eprosima.com/en/latest/fastdds/ros2/ros2.html Evidence (2017) Erika Enterprise RTOS v3. https://www.erika-enterprise.com/ Farkas J, Bello LL, Gunther C (2018) Time-sensitive networking standards. IEEE Commun Stand Mag 2(2):20–21. https://doi.org/10.1109/MCOMSTD.2018.8412457 Farzaneh MH, Knoll A (2017) Time-sensitive networking (TSN): an experimental setup. In: 2017 IEEE vehicular networking conference (VNC). pp 23–26. https://doi.org/10.1109/VNC.2017.8275648 Fayyad H, Perneel L, Timmerman M (2013) Full and para-virtualization with Xen: a performance comparison. J Emerg Trends Comput Inf Sci 10:719–727 Finn N (2022) Introduction to time-sensitive networking. IEEE Commun Stand Mag 6(4):8–13. https://doi.org/10.1109/MCOMSTD.0004.2200046 FlexRay Consortium (2010) FlexRay communications system protocol specification version 3.0.1. Technical report, FlexRay Consortium. https://svn.ipd.kit.edu/nlrp/public/FlexRay/ Fumio N, Yukinori A, Tsuneo S et al (2022) Vehicle electronic control units for autonomous driving in safety and comfort. https://www.hitachi.com/rev/archive/2022/r2022_01/01c01/index.html Garbugli A, Rosa L, Foschini L et al (2022) A framework for tsn-enabled virtual environments for ultra-low latency 5G scenarios. In: ICC 2022—IEEE international conference on communications. pp 5023–5028. https://doi.org/10.1109/ICC45855.2022.9839193 Garbugli A, Rosa L, Bujari A et al (2023) KuberneTSN: a deterministic overlay network for time-sensitive containerized environments. arXiv Preprint. https://doi.org/10.48550/arXiv.2302.08398 Gergeleit M, Streich H (1994) Implementing a distributed high-resolution real-time clock using the CAN-bus. In: Proceedings of the 1st international CAN conference Hackett E (2022) Lin protocol and physical layer requirements. Technical report, Texas Instruments. https://www.ti.com/lit/pdf/slla383 He D, Xu W, Zhang F (2023) Symbolic representation and toolkit development of iterated error-state extended Kalman filters on manifolds. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2023.3237872 Herber C, Richter A, Wild T et al (2014) A network virtualization approach for performance isolation in controller area network (CAN). In: 2014 IEEE 19th real-time and embedded technology and applications symposium (RTAS). pp 215–224. https://doi.org/10.1109/RTAS.2014.6926004 Huang YL, Lu CH (2014) A VM-based approach for real-time EtherCAT control. In: 2014 CACS international automatic control conference (CACS 2014). pp 344–348. https://doi.org/10.1109/CACS.2014.7097214 IEEE (2018) IEEE standard for local and metropolitan area network–bridges and bridged networks. IEEE STD 8021Q-2018 (Revision of IEEE STD 8021Q-2014). pp 1–1993. https://doi.org/10.1109/IEEESTD.2018.8403927 iputils (2022) GitHub—iputils/iputils: the iputils package is set of small useful utilities for Linux networking. https://github.com/iputils/iputils Jailhouse (2015) GitHub—Jailhouse—Linux-based partitioning hypervisor. https://github.com/siemens/jailhouse Jailhouse (2020) GitHub—Siemens/Linux: Linux kernel source tree—ivshmem.c file. https://github.com/siemens/linux/blob/jailhouse-enabling/5.4/drivers/net/ivshmem-net.c Jansen D, Buttner H (2004) Real-time Ethernet: the EtherCAT solution. Comput Control Eng 15(1):16–21. https://doi.org/10.1049/cce:20040104 Kane AA, Mariño AG, Fons F et al (2022) Elastic gateway functional safety architecture and deployment: a case study. IEEE Access 10:91771–91801. https://doi.org/10.1109/ACCESS.2022.3199356 Lee J, Park S (2019) Time-sensitive network (TSN) experiment in sensor-based integrated environment for autonomous driving. Sensors. https://doi.org/10.3390/s19051111 Leonardi L, Bello LL, Patti G (2020) Towards time-sensitive networking in heterogeneous platforms with virtualization. In: 2020 25th IEEE international conference on emerging technologies and factory automation (ETFA). pp 1155–1158. https://doi.org/10.1109/ETFA46521.2020.9212116 Li C, Xi S, Lu C et al (2015) Prioritizing soft real-time network traffic in virtualized hosts based on Xen. In: 21st IEEE real-time and embedded technology and applications symposium. pp 145–156. https://doi.org/10.1109/RTAS.2015.7108436 Li C, Xi S, Lu C et al (2022) Virtualization-aware traffic control for soft real-time network traffic on Xen. IEEE/ACM Trans Netw. https://doi.org/10.1109/TNET.2021.3114055 Liu S, Liu L, Tang J et al (2019) Edge computing for autonomous driving: opportunities and challenges. Proc IEEE 107(8):1697–1716. https://doi.org/10.1109/JPROC.2019.2915983 Lo Bello L, Steiner W (2019) A perspective on IEEE time-sensitive networking for industrial communication and automation systems. Proc IEEE 107(6):1094–1120. https://doi.org/10.1109/JPROC.2019.2905334 Macenski S, Foote T, Gerkey B et al (2022) Robot operating system 2: design, architecture, and uses in the wild. Sci Robot 7(66):eabm6074. https://doi.org/10.1126/scirobotics.abm6074 Meyer P, Steinbach T, Korf F et al (2013) Extending IEEE 802.1 AVB with time-triggered scheduling: a simulation study of the coexistence of synchronous and asynchronous traffic. In: 2013 IEEE vehicular networking conference. pp 47–54. https://doi.org/10.1109/VNC.2013.6737589 MicroROS (2022) Micro-ROS | ROS 2 for microcontrollers. https://micro.ros.org/ Mohammadpour E, Stai E, Le Boudec JY (2019) Improved credit bounds for the credit-based shaper in time-sensitive networking. IEEE Netw Lett 1(3):136–139. https://doi.org/10.1109/LNET.2019.2925176 Motika G, Weiss S (2012) Virtio network paravirtualization driver: implementation and performance of a de-facto standard. Comput Stand Interfaces 34(1):36–47. https://doi.org/10.1016/j.csi.2011.05.002 Obasuyi GC, Sari A (2015) Security challenges of virtualization hypervisors in virtualized hardware environment. Int J Commun Netw Syst Sci. https://doi.org/10.4236/ijcns.2015.87026 Park C, Park S (2023) Performance evaluation of zone-based in-vehicle network architecture for autonomous vehicles. Sensors. https://doi.org/10.3390/s23020669 Qasaimeh M, Denolf K, Lo J et al (2019) Comparing energy efficiency of CPU, GPU and FPGA implementations for vision kernels. In: 2019 IEEE international conference on embedded software and systems (ICESS). pp 1–8. https://doi.org/10.1109/ICESS.2019.8782524 RedHat (1999) The Newlib homepage. https://www.sourceware.org/newlib/ Robert Bosch GmbH (2017) E/E architecture in a connected world. https://www.asam.net/index.php?eID=dumpFile &t=f &f=798 &token=148b5052945a466cacfe8f31c44eb22509d5aad1 ROS-Bridge Community (2020) Generating ring and time fields for LiDARs #416. https://github.com/carla-simulator/ros-bridge/issues/416 Shan T, Englot B, Meyers D et al (2020) LIO-SAM: tightly-coupled LiDAR inertial odometry via smoothing and mapping. In: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS). pp 5135–5142. https://doi.org/10.1109/IROS45743.2020.9341176 SOAFEE (2022) Scalable open architecture for embedded edge (SOAFEE). https://www.soafee.io/. Accessed 4 Apr 2023 SoC-e (2010) SoC-e.com: system on chip & FPGA IP core development. https://soc-e.com Teledyne FLIR (2019) Firefly DL | Teledyne FLIR. https://www.flir.co.uk/products/firefly-dl/?model=FFY-U3-16S2C-S-DL &vertical=machine+vision &segment=iis The Institute of Electrical and Electronics Engineers (IEEE) (2010) IEEE standard for local and metropolitan area networks—virtual bridged local area networks amendment 12: forwarding and queuing enhancements for time-sensitive streams. IEEE STD 8021Qav-2009 (Amendment to IEEE STD 8021Q-2005). pp 1–72. https://doi.org/10.1109/IEEESTD.2010.8684664 The Linux Foundation (2003) Xen project. https://xenproject.org/ Velodyne (2022) Velodyne—Puck (VLP-16)—LiDAR sensor. https://velodynelidar.com/products/puck/ Wang J, Liu J, Kato N (2019) Networking and communications in autonomous driving: a survey. IEEE Commun Surv Tutor 21(2):1243–1274. https://doi.org/10.1109/COMST.2018.2888904 Xen Project (2014) Network throughput and performance guide. https://wiki.xenproject.org/wiki/Network_Throughput_and_Performance_Guide Xen Project (2018) Xen networking. https://wiki.xenproject.org/wiki/Xen_Networking XSens (2022) XSens—MTi-G-710 GNSS/INS—IMU sensor. https://www.xsens.com/mti-g-710 Xu W, Zhang F (2021) FAST-LIO: a fast, robust LiDAR-inertial odometry package by tightly-coupled iterated Kalman filter. IEEE Robot Autom Lett 6(2):3317–3324. https://doi.org/10.1109/LRA.2021.3064227 Xu W, Cai Y, He D et al (2022) FAST-LIO2: fast direct LiDAR-inertial odometry. IEEE Trans Robot 38(4):2053–2073. https://doi.org/10.1109/TRO.2022.3141876 Zhao L, Pop P, Steinhorst S (2022) Quantitative performance comparison of various traffic shapers in time-sensitive networking. IEEE Trans Netw Serv Manag 19(3):2899–2928. https://doi.org/10.1109/TNSM.2022.3180160 Zheng C, Zhu Q, Xu W et al (2022) FAST-LIVO: fast and tightly-coupled sparse-direct LiDAR-inertial-visual odometry. In: 2022 IEEE/RSJ international conference on intelligent robots and systems (IROS). pp 4003–4009. https://doi.org/10.1109/IROS47612.2022.9981107