Time-related changes in myeloperoxidase activity and leukotriene B4 receptor binding reflect leukocyte influx in cerebral focal stroke

Springer Science and Business Media LLC - Tập 24 - Trang 13-30 - 1995
F. C. Barone1, L. M. Hillegass2, M. N. Tzimas2, D. B. Schmidt2, J. J. Foley2, R. F. White1, W. J. Price1, G. Z. Feuerstein1, R. K. Clark1, D. E. Griswold2, H. M. Sarau2
1Department of Cardiovascular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia
2Department of Inflammation and Respiratory Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia

Tóm tắt

In previous studies, we have used histological methods to characterize cellular changes, and validated the use of the myeloperoxidase (MPO) activity assay to quantitate increased neutrophil infiltration in ischemic stroke. We also identified increased leukotriene B4 (LTB4) binding sites as a potential marker for neutrophil infiltration into, focal ischemic tissue. However, these studies were conducted at only one time-point, 24 h after ischemia. In the present study, we examined the full time-course of MPO activity and LTB4 receptor binding following middle cerebral artery occlusion (MCAO) made permanently (PMCAO) or transiently (160 min followed by reperfusion; TMCAO) in spontaneously hypertensive rats, and compared the results to previously characterized histologic changes in these models. Ischemic and contralateral (control) cortical tissue samples were assayed for MPO (U/g wet wt) and [3H]LTB4 receptor binding (fmol/mg protein). Following PMCAO, MPO activity significantly increased as early as 12 h and continued to increase over the next 5 d (p<0.05). Following TMCAO, MPO activity was significantly elevated already after only 6 h of reperfusion and also continued to increase over the next 5 d of reperfusion (p<0.05). LTB4 receptor binding and MPO activity were highly correlated during periods when both measures increased together (i.e., 0.5–5dp<0.01). However, by 15 d post-MCAO, LTB4 receptor binding remained elevated after MPO activity levels had returned to normal. This persistent LTB4 binding was associated with the significant gliosis that was characterized previously to persist in these models. The time-course of increased MPO activity and initially increased LTB4 binding post-MCAO correspond very well to our previous histological data that characterized the time-course for leukocyte infiltration under these conditions. Therefore, the increased MPO activity over time was associated with initial neutrophil and later mononuclear cell infiltration into ischemic tissue in these models. In addition, the present studies utilized histochemical analysis to demonstrate peroxidase activity in macrophages within the cerebral infarct following MCAO, thus validating that MPO activity originates from the later infiltrating mononuclear cells in addition to the early infiltrating neutrophils that had been previously characterized in the same manner. TMCAO produces a significantly larger and earlier increase in ischemic cortex MPO activity and a similar later increase in MPO activity compared to PMCAO treatment. Clearly, reperfusion of cerebral tissue following ischemia greatly exacerbates the degree of cerebral tissue inflammation. These biochemical assays, especially the MPO activity assay, have now been validated for quantitating the early and late phases of the cerebral inflammatory reaction to tissue injury.

Tài liệu tham khảo

Baehner R. L. and Johnston R. B., Jr. (1972) Monocyte function in children with neutropenia and chronic infection.Blood 40, 31–41. Barone F. C., Hilleegass L. M., Price W. J., White R. F., Lee E. V., Feuerstein G. Z., Sarau H. M., Clark R. K., and Griswold D. E. (1991) Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: Myeloperoxidase activity assay and histological verification.J. Neurosci. Res. 29, 336–345. Barone F. C., Price W. J., White R. F., Willette R. N., and Feuerstein G. Z. (1992a) Genetic hypertension and increased susceptibility to cerebral ischemia.Neurosci. Biobehav. Rev. 16, 219–233. Barone F. C., Schmidt D. B., Hillegass L. M., Price W. J., White R. F., Feuerstein G. Z., Clark R. K., Lee E. V., Griswold D. E., and Sarau H. M. (1992b) Reperfusion increases neutrophils and leukotriene B4 receptor binding in rat focal ischemia.Stroke 23, 1337–1348. Barone F. C., Willette R. N., Clark R. K., Nelson A. H., Feuerstein G. Z., Sarau H. M., Tzimas M. N., Schmidt D. B., Kapadia R. D., and Sarkar S. K. (1994) Murine models of cerebral ischemia, inMembrane Linked Disease vol. 4, CNS Trauma: Laboratory Techniques and Recent Advancements, (Ohnishi, S. T., et al), CRC, New York, in press. Beerhuizen H. and van Furth R. (1993) Monocyte adherence to human vascular endothelium.J. Leukocyte Biol. 54, 363–378. Biagas K. V., Uhl M. W., Schiding J. K., Nemoto E. M., and Kochanek P. M. (1992) Assessment of posttraumatic polymorphonuclear leukocyte accumulation in rat brain using tissue myeloperoxidase assay and vinblastine treatment.J. Neurotrauma 9, 363–371. Bos A., Wever R., and Roos D. (1978) Characterization and quantification of the peroxidase in human monocytes.Biochim. Biophys. Acta 525, 37–44. Bradley P. P., Priebat D. A., Christensen R. D., and Rothstein G. (1982) Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker.J. Invest. Dermatol. 78, 206–209. Chen H., Chopp M., and Bodzin G. (1992) Neutropenia reduces the volume of cerebral infarct after transient middle cerebral artery occlusion in the rat.Neurosci. Res. Commun. 11, 93–99. Chen H., Chopp M., Zhang R. L., Bodzin G., Chen Q., Rusche J. R., and Todd R. F. (1994) Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat.Ann. Neurol. 35, 458–463. Chopp M., Zhang R. I., Chen H., Li Y., Jiang N., and Rusche J. R. (1994) Post-Ischemic administration of an anti-MAC-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat.Stroke 25, 869–876. Clark R., Lee E. V., Fish C. J., White R. F., Price W. J., Jonak Z. L., Feuerstein G. Z., and Barone F. C. (1993) Development of tissue damage, inflammation and resolution following stroke: An immunohistochemical and quantitative planimetric study.Brain Res. Bull. 31, 565–572. Clark R. K., Lee E. V., White R. F., Jonak Z. L., Feurstein G. Z., and Barone F. C. (1994) Reperfusion following focal stroke hastens inflammation and resolution of the ischemic injured tissue.Brain Res. Bull. 35, 387–391. Clark W. M., Madden K. P., Rothlein R., and Zivin J. A. (1991) Reduction of central nervous system ischemic injury by monoclonal antibody to intercellular adhesion molecule.J. Neurosurg. 75, 623–627. Cristol J-P., Provencal B., Borgeat P., and Sirois P. (1988) Characterization of leukotriene B4 binding sites on guinea-pig lung macrophages.J. Pharmacol. Exp. Ther. 247, 1199–1202. DeBrum-Fernandes A. J., Guillemette G., and Sirois P. (1990) Leukotriene B4 binding sites in guinea pig alveolar macrophages.Prostaglandin 40, 515–427. del Zoppo G. J., Schmid-Schonbein G. W., Mori E., Copeland B. R., and Chang C. M. (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons.Stroke 22, 1276–1283. Dereski M. O., Chopp M., Knight R. A., Chen H., and Garcia J. H. (1992) Focal cerebral ischemia in the rat: Temporal profile of neutrophil responses.Neurosci. Res. Commun. 11, 179–186. Feurstein G. Z., Liu T., and Barone F. C. (1994a) Cytokines, inflammation and the brain: the role of tumor necrosis factor-α.Cerebrovasc.Brain Metabl. Rev. 6, 341–360. Feuerstein G., Wang X-K., Yue T-L., and Barone F. C. (1994b) Inflammatory cytokines and stroke: Emerging new strategies for stroke therapeutics.Stroke 25 (Suppl.), in press. Garcia J. H., Yoshida Y., Chen H., Li Y., Zhang Z. G., Lian J., Chen S., and Chopp M. (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat.Am. J. Pathol. 142, 623–635. Goldman D. W., and Goetzl E. J. (1984) Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4. Identification of a subset of high affinity receptors that transduce the chemotactic response.J. Exp. Med. 159, 1027–1041. Granger D. N., and Kvietys P. R. (1993) Leukocyte-endothelial cell adhesion induced by ischemia and reperfusion.Can. J. Physiol. 71, 67–75. Guilian D. (1990) Microglia, cytokines, and cytotoxins: Modulators of cellular responses after injury to the central nervous system.J. Immunol. Immunopharmacol. 10, 15–21. Hallenbeck J. M. and Dutka A. J. (1990) Background review and current concepts of reperfusion injury.Arch. Neurol. 47, 1245–1254. Harlan J. M. (1987) Neutrophil mediated vascular injury.Acta Med. Scand. 715, (Suppl.), 123–129. Hsu C. Y., Liu T. H., Xu J., Hogan E. L., Chao J., Sun G., Tai H. H., Beckman J. S., and Freeman B. A. (1989) Arachidonic acid metabolites in cerebral ischemia.Ann. NY Acad. Sci. 559, 282–295. Kochanek P. M. and Hallenbeck J. M. (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke.Stroke 23, 1367–1379. Kreisle R. A., Parker C. W., Griffin G. L., Senior R. M., and Stenson W. F. (1985) Studies of leukotriene B4-specific binding and function in rat polymorphonuclear leukocytes: Absence of a chemotactic response.J. Immunol. 134, 3356–3363. Lindgren J. A., Miyamoto T., Schalling M., Hokfelt T., and Samuelsson B. (1987) Production and binding of leukotrienes in the rat brain, inAdvances in Prostaglandin, Thromboxane, and leukotriene Research, vol. 17 (Samuelsson, B. Paoletti, R., and Ramwell, P. W., eds.) Raven, New York, pp. 923–928. Luna L. G. (1968)Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology, McGraw-Hill, New York. Mori E., Yoneda Y., Tabuchi M., Toshida T., Ohkawa S., Ohsumi Y., Kitano K., Tsutsumi A., and Yamadori A. (1992) Intravenous recombinant tissue plasminogen activator in acute carotid artery territory stroke.Neurology 42, 976–982. Moskowitz M. A., Kiwak K. J., Hekimian K., and Levine L. (1984) Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion.Science 224, 886–889. Piani D., Constam D. B., Frei K., and Fontano A. (1994) Macrophages in the brain: Friends or enemies?News Physiol. Sci. 9, 80–84. Pozzilli C., Lenzi G. L., Argentini C., Carole A. S., Rasura M., Signore A., Bozzao L., and Pozzilli P. (1985) Imaging of leukocyte infiltration in human cerebra infarcts.Stroke 16, 251–255. Ringelstein E. B., Biniek R., Weiller C., Ammeling B., Nolte P. N., and Thron A. (1992) Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalisation.Neurology 4, 289–298. Salma S. E., Cline M. J., Schultz J., and Lehrer R. Il (1970) Myeloperoxidase deficiency: Immunologic study of a genetic leukocyte defect.N. Engl. J. Med. 282, 250–253. Schalling M., Neil A., Tereniris L., Lindgren J. A., Miyamoto T., Hokfelt T., and Samuelsson B. (1986) Leukotriene C4 binding sites in the rat central nervous system.Eur. J. Pharmacol. 122, 251–257. Shiga Y., Onodera H., Kogure K., Yamosaki Y., Syozuhara H., and Sendo, F. (1991) Neutrophil as a mediator of ischemic edema formation in the brain.Neurosci. Lett. 125, 110–112. Sobel R. A., Mitchell M. E., and Fondren G. (1990) Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central, nervous system.Am. J. Pathol 136, 1309–1316. Thornhill M. H. and Haskard D. O. (1993) Leukocyte adhesion to endothelium, inBlood Cell Biochemistry: Macrophages and Related Cells, vol. 5 (Horton, M. A., ed.) Plenum, New York, pp. 371–393. Wang P. Y., Kao C. H., Mui M. Y., and Wang S. J. (1993) Leukocyte infiltration in acute hemispheric ischemic stroke.Stroke 24, 236–240. Wang X. K., Siren A-L., Yue T-L., Barone F. C., and Feuerstein G. Z. (1994) Upregulation of intracellular adhesion molecule-1 (ICAM-1) on brain microvascular endothelial cells in rat ischemic cortex.Mol. Brain Res. 26, 61–68. Wardlaw J. M., Dennis M. S., Lindley R. I., Warlow C. P., Sandercock P. A. G., and Sellar R. (1993) Does early reperfusion of a cerebral infarct influence cerebral infarct swelling in the acute stage or the final clinical outcome.Cerebrovasc. Dis. 3, 86–93. Zhang R. L., Chopp M., Li Y., Zaloga C., Jiang N., Jones M., Miyasaka M., and Ward P. (1994) Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat.Neurology 44, 1747–1751.