Time optimal control based on classification of quantum gates

Quantum Information Processing - Tập 19 Số 3 - 2020
Bao-Zhi Sun1, Shao-Ming Fei2, Naihuan Jing3, Xianqing Li‐Jost4
1School of Mathematical Sciences, Qufu Normal University, Shandong 273165, China
2School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
3Department of Mathematics, North Carolina State University, Raleigh, NC, USA
4Max-Planck-Institute for Mathematics in the Sciences, 04103, Leipzig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Warren, W., Rabitz, H., Dahleb, M.: Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993)

Rabitz, H., d’Vivie-Riedle, R., Motzkus, M., et al.: Whether the future of controlling quantum phenomena? Science 288, 824–828 (2000)

Daniel, C., Full, J., Gonzàlez, L., et al.: Deciphering the reaction dynamics underlying optimal control laser fields. Science 299, 536–539 (2003)

Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)

Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)

Li, B., Yu, Z.H., Fei, S.M., Li-Jost, X.Q.: Time optimal quantum control of two-qubit systems. Sci. China Phys. Mech. Astron. 56, 2116–2121 (2013)

Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)

Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

Glaser, J., Schulte-Herbrüggen, T., Sieveking, M., et al.: Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy. Science 280, 421–424 (1998)

Helgason, S.: Differential Geometry. Lie Groups and Symmetric Spaces. Interscience, New York (1978)

Jing, N.: Unitary and orthogonal equivalence of sets of matrices. Linear. Algebra Appl. 481, 235–242 (2015)

Silverman, M.: The curious problem of spinor rotation. Eur. J. Phys. 1, 116 (1980)

Aharonov, Y., Susskind, L.: Observability of the sign change of spinors under $$2\pi $$ rotations. Phys. Rev. 158, 1237 (1967)

Du, J., Zhu, J., Shi, M., Peng, X., Suter, D.: Experimental observation of a topological phase in the maximally entangled state of a pair of qubits. Phys. Rev. A 76, 042121 (2007)

Werner, S.A., Colella, R., Overhauser, A.W., Eagen, C.F.: Observation of the phase shift of a neutron due to precession in a magnetic field. Phys. Rev. Lett. 35, 1053 (1975)

Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., Bonse, U.: Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975)

Stoll, E., Vega, J., Vaughan, W.: Explicit demonstration of spinor character for a spin-$$1/2$$ nucleus via NMR interferometry. Phys. Rev. A 16, 1521 (1977)

Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)

Tibbetts, K., Brif, C., Grace, M.D., Donovan, A., Hocker, D., Ho, T., Wu, R., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)

Schulte-Herbruggen, T., Sporl, A., Khaneja, N., Glaser, S.J.: Optimal control-based efficient synthesis of building blocks of quantum algorithms: a perspective from network complexity towards time complexity. Phys. Rev. A 72, 042331 (2005)

Shauro, V.P., Zobov, V.E.: Global phase and minimum time of quantum Fourier transform for qudits represented by quadrupole nuclei. Phys. Rev. A 88, 042320 (2013)

Shauro, V.: Exact solutions for time-optimal control of spin $$I=1$$ by NMR. Quantum Inf. Process. 14, 2345–2355 (2015)

Ji, Y.L., Bian, J., Jiang, M., D’Alessandro, D., Peng, X.H.: Time-optimal control of independent spin-1/2 systems under simultaneous control. Phys. Rev. A 98, 062108 (2018)