Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models

Dong-Hyun Lee1, Seung‐Ki Min1, Changyong Park1, Myoung‐Seok Suh2, Joong‐Bae Ahn3, Dong‐Hyun Cha4, Dong‐Kyou Lee5, Song‐You Hong6, Seong‐Chan Park7, Hyun‐Suk Kang8
1School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
2Department of Atmospheric Science, Kongju National University, Kongju, Korea
3Department of Atmospheric Sciences, Pusan National University, Busan, Korea
4School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
5School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
6Korea Institute of Atmospheric Prediction Systems, Seoul, Korea
7Korea Meteorological Administration, Seoul, Korea
8National Institute of Meteorological Sciences, Jeju, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baek, H. J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49, 603–618.

Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Cambridge University Press, 867-952.

Christensen, J. H., and Coauthors, 2007: Regional climate projections. In Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, 847–940.

Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC, Cambridge University Press, 1217–1308.

Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: the role of internal variability. Clim. Dynam., 38, 527–546.

Donat, G. M., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, doi:10.1029/2012GL052459.

Giorgi, F., and X. Bi, 2009: Time of emergence (TOE) of GHG-forced precipitation change hot-spots: Geophys. Res. Lett., 36, L06709, doi: 10.1029/2009GL037593.

Giorgi, F., and Coauthors, 2012: RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res., 52, 7–29.

Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated highresolution grids of monthly climatic observations-the CRU TS3. 10 Dataset, Int. J. Climatol., 34, 623–642.

Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1107.

Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals: Geophys. Res. Lett., 39, L01702, doi:10.1029/2011GL050087.

Hong, S.-Y., and E.-C. Chang, 2012: Spectral Nudging Sensitivity Experiments in a Regional Climate Model. Asia-Pac. J. Atmos. Sci., 48, 345–355.

Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83–104, doi:10.1007/s13143-014-0029-2.

Im, E.-S., J.-B. Ahn, W.-T. Kwon, and F. Giorgi, 2008: Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 2: future climate projection (2021-2050). Clim. Dynam., 30, 239–254.

Im, E.-S., B.-J. Lee, J.-H. Kwon, S.-R. In, and S.-O. Han, 2012a: Potential increase of flood hazards in Korea due to global warming from a highresolution regional climate simulation. Asia-Pac. J. Atmos. Sci., 48, 107–113.

Im, E.-S., J.-B. Ahn, and D.-W. Kim, 2012b: An assessment of future dryness over Korea based on the ECHAM5-RegCM3 model chain under A1B emission scenario. Asia-Pac. J. Atmos. Sci., 48, 325–337.

Kang, H.-S., and S.-Y. Hong, 2008: Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119 doi:10.1029/2007JD009692.

King, A. M., G. Donat, E. M. Fischer, E. Hawkins, L. V. Alexander, D. J. Karoly, A. J. Dittus, S. C. Lewis, and S. E. Perkins, 2015: The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10, 094015, doi:10.1088/1748-9326/10/9/094015.

King, A. M., M. T. Black, S.-K. Min, E. M. Fischer, D. M. Mitchell, L. J. Harrington, and S. E. Perkins-Kirkpatrick, 2016: Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett., published online, doi:10.1002/2015GL067448.

Lee, J.-W., and S.-Y. Hong, 2014: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol., 117, 667–677, doi:10.1007/s00704-013-1034-6.

Li, W., W. Guo, Y. Xue, C. Fu, and B. Qiu, 2015: Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation. Clim. Dynam., doi: http://10.1007/s00382-015-2964-8 .

Maraun, D., 2013: When will trends in European mean and heavy daily precipitation emerge? Environ. Res. Lett., 8, 014004, doi:10.1088/1748-9326/8/1/014004.

Mahlstein, I., R. Knutti, S. Solomon, and R. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett., 6, 034009, doi:10.1088/1748-9326/6/3/034009.

Min, S.-K., Y. H. Kim, M. K. Kim, and C. Park, 2014: Assessing human contribution to the summer 2013 Korean heat wave, In: Explaining extreme events of 2013 from a climate perspective. Bull. Amer. Meteor. Soc., 95, S48–S51.

Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103–121.

Moss, R., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

Oh, S. G., M. S. Suh, and D. H. Cha, 2013: Impact of lateral boundary conditions on precipitation and temperature extremes over South Korea in the CORDEX regional climate simulation using RegCM4. Asia-Pac. J. Atmos. Sci., 49, 497–509.

Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dynam., 46, 2469–2486, doi:10.1007/s00382-015-2713-z.

Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the IPCC. Cambridge University Press, Cambridge, 109–230.

Suh, M.-S., S.-G. Oh, D.-K. Lee, D. H., Cha. S.-J. Choi, C.-S. Jin, and S,- Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Climate, 25, 7067–7082.

Suh, M.-S., and Coauthors, 2016: Projection of fine-scale climate change using muli-regional climate models and ensembles over South Korea based on four RCP scenarios. Part 1. Surface air temperature. Asia-Pac. J. Atmos. Sci., 52, doi:10.1007/s13143-016-0017-9.

Sui, Y., X. Lang, and D. Jiang, 2014: Time of emergence of climate signals over China under the RCP4.5 scenario. Climatic Change, 125, 265–276.

Tebaldi, C., and R. Knutti, 2007: The use of the multi model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A, 365, 2053–2075.

Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biometrics Bull., 1, 80–83.

Yun, K.-S., K.-Y. Heo, J.-E. Chu, K.-J. Ha, E.-J. Lee, U. Choi, and A. Kitoh, 2012: Changes in climate classification and extreme climate indices from a high-resolution future projection in Korea. Asia-Pac. J Atmos. Sci., 48, 213–226.

Zhou, L., R. E. Dickinson, P. Dirmeyer, A. Dai, and S.-K. Min, 2009: Spatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations. Geophys. Res. Lett., 36, L02702, doi:10.1029/2008GL036141.