Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự dẫn nhiệt theo thứ tự phân số trong một hình trụ và các ứng suất nhiệt liên quan
Tóm tắt
Lý thuyết về ứng suất nhiệt dựa trên phương trình dẫn nhiệt với đạo hàm phân số Caputo cấp 0 < α ≤ 2 được sử dụng để nghiên cứu các ứng suất nhiệt đối xứng trục trong một hình trụ. Giải pháp được thu được bằng cách áp dụng biến đổi Laplace và biến đổi tích phân Hankel hữu hạn. Các bài toán Dirichlet và hai loại bài toán Neumann với giá trị biên đã cho của nhiệt độ, đạo hàm chuẩn của nhiệt độ và lưu lượng nhiệt được xem xét. Các kết quả số được minh họa bằng đồ họa.
Từ khóa
#ứng suất nhiệt #dẫn nhiệt #phương trình dẫn nhiệt #biến đổi Laplace #biến đổi tích phân Hankel #hình trụTài liệu tham khảo
Podstrigach, Y.S., Kolyano, Y.M.: Generalized Thermomechanics. Naukova Dumka, Kiev (1976) (in Russian)
Chandrasekharaiah D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)
Ignaczak J.: Generalized thermoelasticity and its applications. In: Hetnarski, R.B. (eds) Thermal Stresses III, pp. 279–354. North-Holland, Amsterdam (1989)
Chandrasekharaiah D.S.: Hiperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)
Tamma K.K., Zhou X.: Macroscale and microscale thermal transport and thermo-mechanical interactions: Some noteworthy perspectives. J. Therm. Stress. 21, 405–449 (1998)
Hetnarski R.B., Ignaczak J.: Generalized thermoelasticity. J. Therm. Stress. 22, 451–476 (1999)
Ignaczak J., Ostoja-Starzewski M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)
Sherief H.H., Anwar M.N.: A problem in generalized thermoelasticity for an infinitely long annular cylinder composed of two different materials. Acta Mech. 80, 137–149 (1989)
Ezzat M.: Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions. Int. J. Eng. Sci. 33, 2011–2020 (1995)
Mukhopadhyay S., Mukherjee R.N.: Thermoelastic interaction in a transversally isotropic cylinder subjected to ramp type increase in boundary temperature and load. Indian J. Pure Appl. Math. 33, 635–646 (2002)
Sherief H.H., Elmisiery A.E.M., Elhagary M.A.: Generalized thermoelastic problem for an infinitely long hollow cylinder for short times. J. Therm. Stress. 27, 885–902 (2004)
He T., Tian X., Shen Y.: A generalized electromagneto-thermoelastic problem for an infinitely long solid cylinder. Eur. J. Mech. A/Solids 24, 349–359 (2005)
El-Bary A.A.: An infinite thermoelastic long annular cylinder with variable thermal conductivity. J. Appl. Sci. Res. 2, 341–345 (2006)
Aouadi M.: A generalized thermoelastic diffusion problem for an infinitely long solid cylinder. Int. J. Math. Math. Sci. Article ID 25976, 1–15 (2006)
Bagri A., Eslami M.R.: A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders. J. Therm. Stress. 30, 911–930 (2007)
Bagri A., Eslami M.R.: A unified generalized thermoelasticity; solution for cylinders and spheres. Int. J. Mech. Sci. 49, 1325–1335 (2007)
Kar A., Kanoria M.: Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc. Eur. J. Mech. A/Solids 26, 969–981 (2007)
Youssef H.M., Abbas I.A.: Thermal shock problem of generalized thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. Comput. Methods Sci. Technol. 13, 95–100 (2007)
Mukhopadhyay S., Kumar R.: Solution of a problem of generalized thermoelasticity of an annular cylinder with variable material properties by finite difference method. Comput. Methods Sci. Technol. 15, 169–176 (2009)
Povstenko Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stress. 28, 83–102 (2005)
Povstenko Y.Z.: Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Q. J. Mech. Appl. Math. 61, 523–547 (2008)
Povstenko Y.: Thermoelasticity which uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009)
Povstenko, Y.Z.: Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Phys. Scr. T 136, 014017 (6 pp) (2009)
Povstenko Y.Z.: Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation. Int. J. Solids Struct. 44, 2324–2348 (2007)
Povstenko Y.Z.: Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stress. Mech. Res. Commun. 37, 436–440 (2010)
Povstenko Y.Z.: Fractional radial diffusion in a cylinder. J. Mol. Liq. 137, 46–50 (2008)
Narahari Achar B.N., Hanneken J.W.: Fractional radial diffusion in a cylinder. J. Mol. Liq. 114, 147–151 (2004)
Özdemir N., Karadeniz D.: Fractional diffusion-wave problem in cylindrical coordinates. Phys. Lett. A 372, 5968–5972 (2008)
Özdemir N., Karadeniz D., Iskender B.B.: Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A 373, 221–226 (2009)
Özdemir, N., Agrawal, O.P., Karadeniz, D., Iskender, B.B.: Fractional optimal control problem of an axis-symmetric diffusion-wave propagation. Phys. Scr. T 136, 014024 (5 pp) (2009)
Lenzi E.K., da Silva L.R., Silva A.T., Evangelista L.R., Lenzi M.K.: Some results for a fractional diffusion equation with radial symmetry in a confined region. Phys A 388, 806–810 (2009)
Qi H., Liu J.: Time-fractional radial diffusion in hollow geometries. Meccanica 45, 577–583 (2010)
Gorenflo R., Mainardi F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, New York (1997)
Kilbas A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Nowacki W.: Thermoelasticity. PWN—Polish Scientific Publishers, Warszawa (1986)
Parkus H.: Instationäre Wärmespannungen. Springer, Wien (1959)
Noda N., Hetnarski R., Tanigawa Y.: Thermal Stresses, 2nd edn. Taylor & Francis, New York (2003)
Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.: Higher Transcendental Functions, vol. 3. McGraw-Hill, New York (1955)
Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)
Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959)
Povstenko, Y.Z.: Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Frac. Calc. Appl. Anal. 14, 418–435 (2011). doi:10.2478/s13540-011-0026-4
Sneddon I.N.: The Use of Integral Transforms. McGraw-Hill, New York (1972)