Time-domain Brillouin scattering for evaluation of materials interface inclination: Application to photoacoustic imaging of crystal destruction upon non-hydrostatic compression

Photoacoustics - Tập 33 - Trang 100547 - 2023
Sathyan Sandeep1, Samuel Raetz1, Nikolay Chigarev1, Nicolas Pajusco1, Théo Thréard1, Mathieu Edely2, Alain Bulou2, Andreas Zerr3, Vitalyi E. Gusev1
1Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
2Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283, CNRS, Le Mans Université, France
3Laboratoire de Sciences des Procédés et des Matériaux (LSPM-CNRS UPR-3407), Université Sorbonne Paris Nord (USPN), Villetaneuse, 93430, France

Tài liệu tham khảo

Dewhurst, 1988, A remote laser system for ultrasonic velocity measurement at high temperatures, J. Appl. Phys., 63, 1225, 10.1063/1.339987 Scruby, 1990 Telschow, 2004, Material property measurement in hostile environments using laser acoustics, Vol. 1, 662 Schley, 2007, Real-time measurement of material elastic properties in a high Gamma irradiation environment, Nucl. Technol., 159, 202, 10.13182/NT07-A3865 De Dominicis, 2021, Radiation tolerant 3D laser scanner for structural inspections in nuclear reactor vessels and fuel storage pools, Sci. Technol. Nucl. Ins., 2021 Jayaraman, 1983, Diamond anvil cell and high-pressure physical investigations, Rev. Modern Phys., 55, 65, 10.1103/RevModPhys.55.65 Dubrovinskaia, 2016, Terapascal static pressure generation with ultrahigh yield strength nanodiamond, Sci. Adv., 2, 10.1126/sciadv.1600341 Brown, 1988, Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell, Science, 241, 65, 10.1126/science.241.4861.65 Baer, 1998, Impulsive stimulated scattering in ice VI and ice VII, J. Chem. Phys., 108, 4540, 10.1063/1.475882 Abramson, 1999, Applications of impulsive stimulated scattering in the earth and planetary sciences, Annu. Rev. Phys. Chem., 50, 279, 10.1146/annurev.physchem.50.1.279 Crowhurst, 2001, Surface acoustic waves in the diamond anvil cell: An application of impulsive stimulated light scattering, Phys. Rev. B, 64, 10.1103/PhysRevB.64.100103 Crowhurst, 2004, Impulsive stimulated light scattering from opaque materials at high pressure, J. Phys.: Condens. Matter, 16, S1137 Akhmanov, 1992, Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics, Sov. Phys. Usp., 35, 153, 10.1070/PU1992v035n03ABEH002221 Chigarev, 2008, Laser generation and detection of longitudinal and shear acoustic waves in a diamond anvil cell, Appl. Phys. Lett., 93, 10.1063/1.3013587 Chigarev, 2011, Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium, J. Phys.: Conf. Ser., 278 Armstrong, 2008, Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell, Appl. Phys. Lett., 92, 10.1063/1.2898222 Decremps, 2008, Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: Application to the stability study of alpdmn, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.035502 Nikitin, 2015, Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering, Sci. Rep., 5, 9352, 10.1038/srep09352 Decremps, 2015, Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature, Ultrasonics, 56, 129, 10.1016/j.ultras.2014.04.011 Kuriakose, 2017, In situ imaging of the dynamics of photo-induced structural phase transition at high pressures by picosecond acoustic interferometry, New J. Phys., 19, 10.1088/1367-2630/aa6b3d Sandeep, 2021, 3D characterization of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering, J. Appl. Phys., 130, 10.1063/5.0056814 Boccato, 2022, Picosecond acoustics: a new way to access elastic properties of materials at pressure and temperature conditions of planetary interiors, Phys. Chem. Mineral., 49, 20, 10.1007/s00269-022-01194-6 Li, 2022, Anomalous thermal transport under high pressure in boron arsenide, Nature, 612, 459, 10.1038/s41586-022-05381-x Thomsen, 1986, Picosecond interferometric technique for study of phonons in the Brillouin frequency range, Opt. Commun., 60, 55, 10.1016/0030-4018(86)90116-1 Grahn, 1989, Picosecond ultrasonics, IEEE J. Quantum Electron., 25, 2562, 10.1109/3.40643 Gusev, 2018, Advances in applications of time-domain Brillouin scattering for nanoscale imaging, Appl. Phys. Rev., 5, 10.1063/1.5017241 Dil, 1982, Brillouin scattering in condensed matter, Rep. Progr. Phys., 45, 285, 10.1088/0034-4885/45/3/002 Kuriakose, 2016, Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures, Ultrasonics, 69, 259, 10.1016/j.ultras.2016.03.007 Kuriakose, 2017, Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa, Phys. Rev. B, 96, 10.1103/PhysRevB.96.134122 Raetz, 2019, Elastic anisotropy and single-crystal moduli of solid argon up to 64 GPa from time-domain Brillouin scattering, Phys. Rev. B, 99, 10.1103/PhysRevB.99.224102 Xu, 2021, Influence of elastic anisotropy on measured sound velocities and elastic moduli of polycrystalline cubic solids, J. Appl. Phys., 130, 10.1063/5.0053372 Devos, 2004, Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect, Phys. Rev. B, 70, 10.1103/PhysRevB.70.125208 Devos, 2005, A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects, Appl. Phys. Lett., 86, 10.1063/1.1929869 Hudert, 2008, Influence of doping profiles on coherent acoustic phonon detection and generation in semiconductors, J. Appl. Phys., 104, 10.1063/1.3033140 Dehoux, 2012, Relaxation dynamics in single polymer microcapsules probed with laser-generated GHz acoustic waves, Soft Matter, 8, 2586, 10.1039/c2sm07146k Khafizov, 2016, Subsurface imaging of grain microstructure using picosecond ultrasonics, Acta Mater., 112, 209, 10.1016/j.actamat.2016.04.003 Wang, 2020, Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons, Nature Commun., 11, 1597, 10.1038/s41467-020-15360-3 La Cavera, 2021, Phonon imaging in 3D with a fibre probe, Light Sci. Appl., 10, 91, 10.1038/s41377-021-00532-7 Thréard, 2021, Photoacoustic 3-D imaging of polycrystalline microstructure improved with transverse acoustic waves, Photoacoustics, 23, 10.1016/j.pacs.2021.100286 Gusev, 2023, Time-domain Brillouin scattering theory for probe light and acoustic beams propagating at an angle and acousto-optic interaction at material interfaces, under review in Photoacoustics, 10.1016/j.pacs.2023.100563 Weis, 1985, Lithium niobate: Summary of physical properties and crystal structure, Appl. Phys. A, 37, 191, 10.1007/BF00614817 Goto, 1985, Shock-induced phase transformation in lithium niobate, J. Appl. Phys., 58, 2548, 10.1063/1.335934 Sang, 2015, Electronic and optical properties of lithium niobate under high pressure: A first-principles study, Chin. Phys. B, 24, 10.1088/1674-1056/24/7/077104 Akaogi, 2022, Crystal chemistry, phase relations, and energetics of high-pressure ABO3 perovskites, 115 Ishii, 2017, Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: A possible indicator of shock conditions of meteorites, Am. Mineral., 102, 1947, 10.2138/am-2017-6027 Akaogi, 2019, High-pressure and high-temperature phase transitions in Fe2TiO4 and Mg2TiO4 with implications for titanomagnetite inclusions in superdeep diamonds, Minerals, 9, 614, 10.3390/min9100614 Tschauner, 2020, Riesite, a new high pressure polymorph of TiO2 from the ries impact structure, Minerals, 10, 78, 10.3390/min10010078 Ródenas, 2006, Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals, J. Appl. Phys., 100, 10.1063/1.2218991 Mi, 2018, Strength and texture of sodium chloride to 56 GPa, J. Appl. Phys., 123, 10.1063/1.5022273 Kushibiki, 1999, Accurate measurements of the acoustical physical constants of LiNbO3 and LiTaO3 single crystals, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 46, 1315, 10.1109/58.796136 2023 Lide, 2004 Zha, 2007, Optical study of H2O ice to 120 GPa: Dielectric function, molecular polarizability, and equation of state, J. Chem. Phys., 126, 10.1063/1.2463773 Busby, 2005, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels, J. Nucl. Mater., 336, 267, 10.1016/j.jnucmat.2004.09.024 Lejman, 2016, Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics, Nature Commun., 7, 12345, 10.1038/ncomms12345 Zelmon, 1997, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate, J. Opt. Soc. Amer. B, 14, 3319, 10.1364/JOSAB.14.003319 Lin, 1991, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry, J. Appl. Phys., 69, 3816, 10.1063/1.348958 Self, 1983, Focusing of spherical Gaussian beams, Appl. Opt., 22, 658, 10.1364/AO.22.000658 Polian, 1983, Brillouin scattering from H2O: Liquid, ice VI, and ice VII, Phys. Rev. B, 27, 6409, 10.1103/PhysRevB.27.6409 McSkimin, 1972, Elastic moduli of diamond as a function of pressure and temperature, J. Appl. Phys., 43, 2944, 10.1063/1.1661636 Hao, 2010, First-principles study of high pressure structure phase transition and elastic properties of titanium, Solid State Sci., 12, 1473, 10.1016/j.solidstatesciences.2010.06.010 Eremets, 1992, Refractive index of diamond under pressure, High Pressure Res., 9, 347, 10.1080/08957959208245659 Cridling, 2020, Anodized titanium oxide thickness estimation with ellipsometry, reflectance spectra extrema positions and electronic imaging: importance of the interfaces electromagnetic phase-shift, Thin Solid Films, 709, 10.1016/j.tsf.2020.138181 Shimizu, 1996, High-pressure elastic properties of the VI and VII phase of ice in dense H2O and D2O, Phys. Rev. B, 53, 6107, 10.1103/PhysRevB.53.6107 da Jornada, 1985, Phase transition and compression of LiNbO3 under static high pressure, J. Appl. Phys., 57, 842, 10.1063/1.334682 Matsuda, 2004, Laser picosecond acoustics in a two-layer structure with oblique probe light incidence, Ultrasonics, 42, 653, 10.1016/j.ultras.2004.01.052 Dehoux, 2007, Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics, Phys. Rev. B, 76, 10.1103/PhysRevB.76.024311 Abramowitz, 1965 Newville, 2022 Dewaele, 2015, High pressure-temperature phase diagram and equation of state of titanium, Phys. Rev. B, 91, 10.1103/PhysRevB.91.134108 Wright, 1991, Ultrafast vibration and laser acoustics in thin transparent films, Opt. Lett., 16, 1529, 10.1364/OL.16.001529 Wright, 1992, Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics, J. Appl. Phys., 71, 1617, 10.1063/1.351218 Lomonosov, 2012, Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film, ACS Nano, 6, 1410, 10.1021/nn204210u Devos, 2015, Colored ultrafast acoustics: From fundamentals to applications, Ultrasonics, 56, 90, 10.1016/j.ultras.2014.02.009 Wright, 2001, Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses, Phys. Rev. B, 64, 10.1103/PhysRevB.64.081202 Scherbakov, 2013, Picosecond opto-acoustic interferometry and polarimetry in high-index GaAs, Opt. Express, 21, 16473, 10.1364/OE.21.016473 Sandeep, 2021, Nanomaterials, 11, 10.3390/nano11113131 O’Hara, 2001, Characterization of nanostructured metal films by picosecond acoustics and interferometry, J. Appl. Phys., 90, 4852, 10.1063/1.1406543 Gusev, 1993 Ruello, 2015, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action, Ultrasonics, 56, 21, 10.1016/j.ultras.2014.06.004 Brick, 2017, Picosecond photoacoustic metrology of SiO2 and LiNbO3 layer systems used for high frequency surface-acoustic-wave filters, Appl. Sci., 7, 10.3390/app7080822 Hao, 2001, Experiments with acoustic solitons in crystalline solids, Phys. Rev. B, 64, 10.1103/PhysRevB.64.064302 Scherbakov, 2010, Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.117204 Akimov, 2006, Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.037401 Chen, 2014, Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons, Nano Lett., 14, 1317, 10.1021/nl404297r Thomsen, 1984, Coherent phonon generation and detection by picosecond light pulses, Phys. Rev. Lett., 53, 989, 10.1103/PhysRevLett.53.989 Gusev, 1996, Laser hypersonics in fundamental and applied research, Acustica, 82, S37 Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005 Yang, 2010, Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures, J. Appl. Phys., 107, 10.1063/1.3388283 Rossignol, 2005, Generation and detection of shear acoustic waves in metal submicrometric films with ultrashort laser pulses, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.166106 Zhang, 2011, Three-dimensional acoustic wavefront imaging in anisotropic systems by picosecond acoustics, J. Appl. Phys., 109, 10.1063/1.3532034 Jean, 2016, Spatiotemporal imaging of the acoustic field emitted by a single copper nanowire, Nano Lett., 16, 6592, 10.1021/acs.nanolett.6b03260 Wolanin, 1997, Equation of state of ice VII up to 106 GPa, Phys. Rev. B, 56, 5781, 10.1103/PhysRevB.56.5781 Virtanen, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Methods, 17, 261, 10.1038/s41592-019-0686-2 Shimizu, 1995, Cauchy relation in dense H2O ice VII, Phys. Rev. Lett., 74, 2820, 10.1103/PhysRevLett.74.2820 Eremets, 1996 Somayazulu, 2008, In situ high-pressure x-ray diffraction study of H2O ice VII, J. Chem. Phys., 128, 10.1063/1.2813890