Time-domain Brillouin scattering for evaluation of materials interface inclination: Application to photoacoustic imaging of crystal destruction upon non-hydrostatic compression
Tài liệu tham khảo
Dewhurst, 1988, A remote laser system for ultrasonic velocity measurement at high temperatures, J. Appl. Phys., 63, 1225, 10.1063/1.339987
Scruby, 1990
Telschow, 2004, Material property measurement in hostile environments using laser acoustics, Vol. 1, 662
Schley, 2007, Real-time measurement of material elastic properties in a high Gamma irradiation environment, Nucl. Technol., 159, 202, 10.13182/NT07-A3865
De Dominicis, 2021, Radiation tolerant 3D laser scanner for structural inspections in nuclear reactor vessels and fuel storage pools, Sci. Technol. Nucl. Ins., 2021
Jayaraman, 1983, Diamond anvil cell and high-pressure physical investigations, Rev. Modern Phys., 55, 65, 10.1103/RevModPhys.55.65
Dubrovinskaia, 2016, Terapascal static pressure generation with ultrahigh yield strength nanodiamond, Sci. Adv., 2, 10.1126/sciadv.1600341
Brown, 1988, Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell, Science, 241, 65, 10.1126/science.241.4861.65
Baer, 1998, Impulsive stimulated scattering in ice VI and ice VII, J. Chem. Phys., 108, 4540, 10.1063/1.475882
Abramson, 1999, Applications of impulsive stimulated scattering in the earth and planetary sciences, Annu. Rev. Phys. Chem., 50, 279, 10.1146/annurev.physchem.50.1.279
Crowhurst, 2001, Surface acoustic waves in the diamond anvil cell: An application of impulsive stimulated light scattering, Phys. Rev. B, 64, 10.1103/PhysRevB.64.100103
Crowhurst, 2004, Impulsive stimulated light scattering from opaque materials at high pressure, J. Phys.: Condens. Matter, 16, S1137
Akhmanov, 1992, Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics, Sov. Phys. Usp., 35, 153, 10.1070/PU1992v035n03ABEH002221
Chigarev, 2008, Laser generation and detection of longitudinal and shear acoustic waves in a diamond anvil cell, Appl. Phys. Lett., 93, 10.1063/1.3013587
Chigarev, 2011, Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium, J. Phys.: Conf. Ser., 278
Armstrong, 2008, Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell, Appl. Phys. Lett., 92, 10.1063/1.2898222
Decremps, 2008, Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: Application to the stability study of alpdmn, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.035502
Nikitin, 2015, Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering, Sci. Rep., 5, 9352, 10.1038/srep09352
Decremps, 2015, Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature, Ultrasonics, 56, 129, 10.1016/j.ultras.2014.04.011
Kuriakose, 2017, In situ imaging of the dynamics of photo-induced structural phase transition at high pressures by picosecond acoustic interferometry, New J. Phys., 19, 10.1088/1367-2630/aa6b3d
Sandeep, 2021, 3D characterization of individual grains of coexisting high-pressure H2O ice phases by time-domain Brillouin scattering, J. Appl. Phys., 130, 10.1063/5.0056814
Boccato, 2022, Picosecond acoustics: a new way to access elastic properties of materials at pressure and temperature conditions of planetary interiors, Phys. Chem. Mineral., 49, 20, 10.1007/s00269-022-01194-6
Li, 2022, Anomalous thermal transport under high pressure in boron arsenide, Nature, 612, 459, 10.1038/s41586-022-05381-x
Thomsen, 1986, Picosecond interferometric technique for study of phonons in the Brillouin frequency range, Opt. Commun., 60, 55, 10.1016/0030-4018(86)90116-1
Grahn, 1989, Picosecond ultrasonics, IEEE J. Quantum Electron., 25, 2562, 10.1109/3.40643
Gusev, 2018, Advances in applications of time-domain Brillouin scattering for nanoscale imaging, Appl. Phys. Rev., 5, 10.1063/1.5017241
Dil, 1982, Brillouin scattering in condensed matter, Rep. Progr. Phys., 45, 285, 10.1088/0034-4885/45/3/002
Kuriakose, 2016, Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures, Ultrasonics, 69, 259, 10.1016/j.ultras.2016.03.007
Kuriakose, 2017, Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa, Phys. Rev. B, 96, 10.1103/PhysRevB.96.134122
Raetz, 2019, Elastic anisotropy and single-crystal moduli of solid argon up to 64 GPa from time-domain Brillouin scattering, Phys. Rev. B, 99, 10.1103/PhysRevB.99.224102
Xu, 2021, Influence of elastic anisotropy on measured sound velocities and elastic moduli of polycrystalline cubic solids, J. Appl. Phys., 130, 10.1063/5.0053372
Devos, 2004, Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect, Phys. Rev. B, 70, 10.1103/PhysRevB.70.125208
Devos, 2005, A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects, Appl. Phys. Lett., 86, 10.1063/1.1929869
Hudert, 2008, Influence of doping profiles on coherent acoustic phonon detection and generation in semiconductors, J. Appl. Phys., 104, 10.1063/1.3033140
Dehoux, 2012, Relaxation dynamics in single polymer microcapsules probed with laser-generated GHz acoustic waves, Soft Matter, 8, 2586, 10.1039/c2sm07146k
Khafizov, 2016, Subsurface imaging of grain microstructure using picosecond ultrasonics, Acta Mater., 112, 209, 10.1016/j.actamat.2016.04.003
Wang, 2020, Imaging grain microstructure in a model ceramic energy material with optically generated coherent acoustic phonons, Nature Commun., 11, 1597, 10.1038/s41467-020-15360-3
La Cavera, 2021, Phonon imaging in 3D with a fibre probe, Light Sci. Appl., 10, 91, 10.1038/s41377-021-00532-7
Thréard, 2021, Photoacoustic 3-D imaging of polycrystalline microstructure improved with transverse acoustic waves, Photoacoustics, 23, 10.1016/j.pacs.2021.100286
Gusev, 2023, Time-domain Brillouin scattering theory for probe light and acoustic beams propagating at an angle and acousto-optic interaction at material interfaces, under review in Photoacoustics, 10.1016/j.pacs.2023.100563
Weis, 1985, Lithium niobate: Summary of physical properties and crystal structure, Appl. Phys. A, 37, 191, 10.1007/BF00614817
Goto, 1985, Shock-induced phase transformation in lithium niobate, J. Appl. Phys., 58, 2548, 10.1063/1.335934
Sang, 2015, Electronic and optical properties of lithium niobate under high pressure: A first-principles study, Chin. Phys. B, 24, 10.1088/1674-1056/24/7/077104
Akaogi, 2022, Crystal chemistry, phase relations, and energetics of high-pressure ABO3 perovskites, 115
Ishii, 2017, Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: A possible indicator of shock conditions of meteorites, Am. Mineral., 102, 1947, 10.2138/am-2017-6027
Akaogi, 2019, High-pressure and high-temperature phase transitions in Fe2TiO4 and Mg2TiO4 with implications for titanomagnetite inclusions in superdeep diamonds, Minerals, 9, 614, 10.3390/min9100614
Tschauner, 2020, Riesite, a new high pressure polymorph of TiO2 from the ries impact structure, Minerals, 10, 78, 10.3390/min10010078
Ródenas, 2006, Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals, J. Appl. Phys., 100, 10.1063/1.2218991
Mi, 2018, Strength and texture of sodium chloride to 56 GPa, J. Appl. Phys., 123, 10.1063/1.5022273
Kushibiki, 1999, Accurate measurements of the acoustical physical constants of LiNbO3 and LiTaO3 single crystals, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 46, 1315, 10.1109/58.796136
2023
Lide, 2004
Zha, 2007, Optical study of H2O ice to 120 GPa: Dielectric function, molecular polarizability, and equation of state, J. Chem. Phys., 126, 10.1063/1.2463773
Busby, 2005, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels, J. Nucl. Mater., 336, 267, 10.1016/j.jnucmat.2004.09.024
Lejman, 2016, Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics, Nature Commun., 7, 12345, 10.1038/ncomms12345
Zelmon, 1997, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate, J. Opt. Soc. Amer. B, 14, 3319, 10.1364/JOSAB.14.003319
Lin, 1991, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry, J. Appl. Phys., 69, 3816, 10.1063/1.348958
Self, 1983, Focusing of spherical Gaussian beams, Appl. Opt., 22, 658, 10.1364/AO.22.000658
Polian, 1983, Brillouin scattering from H2O: Liquid, ice VI, and ice VII, Phys. Rev. B, 27, 6409, 10.1103/PhysRevB.27.6409
McSkimin, 1972, Elastic moduli of diamond as a function of pressure and temperature, J. Appl. Phys., 43, 2944, 10.1063/1.1661636
Hao, 2010, First-principles study of high pressure structure phase transition and elastic properties of titanium, Solid State Sci., 12, 1473, 10.1016/j.solidstatesciences.2010.06.010
Eremets, 1992, Refractive index of diamond under pressure, High Pressure Res., 9, 347, 10.1080/08957959208245659
Cridling, 2020, Anodized titanium oxide thickness estimation with ellipsometry, reflectance spectra extrema positions and electronic imaging: importance of the interfaces electromagnetic phase-shift, Thin Solid Films, 709, 10.1016/j.tsf.2020.138181
Shimizu, 1996, High-pressure elastic properties of the VI and VII phase of ice in dense H2O and D2O, Phys. Rev. B, 53, 6107, 10.1103/PhysRevB.53.6107
da Jornada, 1985, Phase transition and compression of LiNbO3 under static high pressure, J. Appl. Phys., 57, 842, 10.1063/1.334682
Matsuda, 2004, Laser picosecond acoustics in a two-layer structure with oblique probe light incidence, Ultrasonics, 42, 653, 10.1016/j.ultras.2004.01.052
Dehoux, 2007, Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics, Phys. Rev. B, 76, 10.1103/PhysRevB.76.024311
Abramowitz, 1965
Newville, 2022
Dewaele, 2015, High pressure-temperature phase diagram and equation of state of titanium, Phys. Rev. B, 91, 10.1103/PhysRevB.91.134108
Wright, 1991, Ultrafast vibration and laser acoustics in thin transparent films, Opt. Lett., 16, 1529, 10.1364/OL.16.001529
Wright, 1992, Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics, J. Appl. Phys., 71, 1617, 10.1063/1.351218
Lomonosov, 2012, Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film, ACS Nano, 6, 1410, 10.1021/nn204210u
Devos, 2015, Colored ultrafast acoustics: From fundamentals to applications, Ultrasonics, 56, 90, 10.1016/j.ultras.2014.02.009
Wright, 2001, Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses, Phys. Rev. B, 64, 10.1103/PhysRevB.64.081202
Scherbakov, 2013, Picosecond opto-acoustic interferometry and polarimetry in high-index GaAs, Opt. Express, 21, 16473, 10.1364/OE.21.016473
Sandeep, 2021, Nanomaterials, 11, 10.3390/nano11113131
O’Hara, 2001, Characterization of nanostructured metal films by picosecond acoustics and interferometry, J. Appl. Phys., 90, 4852, 10.1063/1.1406543
Gusev, 1993
Ruello, 2015, Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action, Ultrasonics, 56, 21, 10.1016/j.ultras.2014.06.004
Brick, 2017, Picosecond photoacoustic metrology of SiO2 and LiNbO3 layer systems used for high frequency surface-acoustic-wave filters, Appl. Sci., 7, 10.3390/app7080822
Hao, 2001, Experiments with acoustic solitons in crystalline solids, Phys. Rev. B, 64, 10.1103/PhysRevB.64.064302
Scherbakov, 2010, Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.117204
Akimov, 2006, Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.037401
Chen, 2014, Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons, Nano Lett., 14, 1317, 10.1021/nl404297r
Thomsen, 1984, Coherent phonon generation and detection by picosecond light pulses, Phys. Rev. Lett., 53, 989, 10.1103/PhysRevLett.53.989
Gusev, 1996, Laser hypersonics in fundamental and applied research, Acustica, 82, S37
Matsuda, 2015, Fundamentals of picosecond laser ultrasonics, Ultrasonics, 56, 3, 10.1016/j.ultras.2014.06.005
Yang, 2010, Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures, J. Appl. Phys., 107, 10.1063/1.3388283
Rossignol, 2005, Generation and detection of shear acoustic waves in metal submicrometric films with ultrashort laser pulses, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.166106
Zhang, 2011, Three-dimensional acoustic wavefront imaging in anisotropic systems by picosecond acoustics, J. Appl. Phys., 109, 10.1063/1.3532034
Jean, 2016, Spatiotemporal imaging of the acoustic field emitted by a single copper nanowire, Nano Lett., 16, 6592, 10.1021/acs.nanolett.6b03260
Wolanin, 1997, Equation of state of ice VII up to 106 GPa, Phys. Rev. B, 56, 5781, 10.1103/PhysRevB.56.5781
Virtanen, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Methods, 17, 261, 10.1038/s41592-019-0686-2
Shimizu, 1995, Cauchy relation in dense H2O ice VII, Phys. Rev. Lett., 74, 2820, 10.1103/PhysRevLett.74.2820
Eremets, 1996
Somayazulu, 2008, In situ high-pressure x-ray diffraction study of H2O ice VII, J. Chem. Phys., 128, 10.1063/1.2813890