Time discrete approximation of weak solutions to stochastic equations of geophysical fluid dynamics and applications
Tóm tắt
As a first step towards the numerical analysis of the stochastic primitive equations of the atmosphere and the oceans, the time discretization of these equations by an implicit Euler scheme is studied. From the deterministic point of view, the 3D primitive equations are studied in their full form on a general domain and with physically realistic boundary conditions. From the probabilistic viewpoint, this paper deals with a wide class of nonlinear, state dependent, white noise forcings which may be interpreted in either the Itô or the Stratonovich sense. The proof of convergence of the Euler scheme, which is carried out within an abstract framework, covers the equations for the oceans, the atmosphere, the coupled oceanic-atmospheric system as well as other related geophysical equations. The authors obtain the existence of solutions which are weak in both the PDE and probabilistic sense, a result which is new by itself to the best of our knowledge.
Tài liệu tham khảo
Arnold, L., Stochastic differential equations: Theory and applications, translated from the German, Wiley-Interscience, John Wiley Sons, New York, 1974.
Aubin J.-P., Approximation of elliptic boundary-value problems, Wiley-Interscience, Pure and Applied Mathematics, Vol. XXVI, A Division of John Wiley Sons, Inc., New York-London-Sydney, 1972.
Brzézniak, Z., Carelli, E. and Prohl, A., Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing, IMA J. Numer. Anal., 33(3), 2013, 771–824.
Bensoussan, A., Stochastic Navier-Stokes equations, Acta Appl. Math., 38(3), 1995, 267–304.
Billingsley, P., Convergence of probability measures, 2nd edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley Sons Inc., New York, 1999.
Bjerknes, V., Das problem der wettervorhersage, betrachtet vom standpunkte der mechanik und der physik, Meteorol. Z., 21, 1904, 1–7.
Brézis, H., Problèmes unilatéraux, J. Math. Pures Appl., 51(9), 1972, 1–168.
Browder, F. E., Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 61, 1968, 388–393.
Berner, J., Shutts, G. J., Leutbecher, M. and Palmer, T. N., A spectral stochastic kinetic energy backscatter scheme and its impact on ow-dependent predictability in the ecmwf ensemble prediction system, J. Atmospheric Sci., 66(3), 2009, 603–626.
Bensoussan, A. and Temam, R., Équations stochastiques du type Navier-Stokes, J. Functional Analysis, 13, 1973, 195–222.
Castaing, C., Sur les multi-applications measurables, Rev. Fran¸caise Informat. Recherche Opérationnell, 1(1), 1967, 91–126.
Chueshov, I. and Millet, A., Stochastic two-dimensional hydrodynamical systems: Wong-Zakai approximation and support theorem, Stoch. Anal. Appl., 29(4), 2011, 570–611.
Cao, C. and Titi, E., Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math. (2), 166(1), 2007, 245–267.
de Bouard, A. and Debussche, A., A semi-discrete scheme for the stochastic nonlinear Schrödinger equation, Numer. Math., 96(4), 2004, 733–770.
Debussche, A., Glatt-Holtz, N. and Temam, R., Local martingale and pathwise solutions for an abstract uids model, Phys. D, 240(14–15), 2011, 1123–1144.
Debussche, A., Glatt-Holtz, N., Temam, R. and Ziane, M., Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25(7), 2012, 2093–2118.
Debussche, A. and Printems, J., Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation, Discrete Contin. Dyn. Syst. Ser. B, 6(4), 2006, 761–781.
Da Prato, G. and Debussche, A., Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., 196(1), 2002, 180–210.
Da Prato, G. and Zabczyk, J., Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and Its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.
Dunford, N. and Schwartz, J. T., Linear Operators, Part I, Wiley Classics Library, John Wiley Sons Inc., New York, 1988, General theory, with the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.
Dudley, R. M., Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002, Revised reprint of the 1989 original.
Durrett, R., Probability: Theory and examples, 4th edition, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2010.
Ewald, B. and Penland, C., Numerical generation of stochastic differential equations in climate models, Special Volume on Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, vol. 14, Elsevier/North-Holland, Amsterdam, 2009, 279–306.
Ewald, B., Petcu, M. and Temam, R., Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise, Anal. Appl. (Singap.), 5(2), 2007, 183–198.
Flandoli, F. and Gatarek, D., Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102(3), 1995, 367–391.
Folland, G. B., Real analysis, 2nd edition, Pure and Applied Mathematics (New York), John Wiley Sons Inc., New York, 1999, Modern Techniques and Their Applications, A Wiley-Interscience Publication.
Guo, B. and Huang, D., 3D stochastic primitive equations of the large-scale ocean: Global well-posedness and attractors, Comm. Math. Phys., 286(2), 2009, 697–723.
Gyöongy, I. and Millet, A., On discretization schemes for stochastic evolution equations, Potential Anal., 23(2), 2005, 99–134.
Grecksch, W. and Schmalfuß, B., Approximation of the stochastic Navier-Stokes equation, Mat. Apl. Comput., 15(3), 1996, 227–239.
Glatt-Holtz, N. and Temam, R., Cauchy convergence schemes for some nonlinear partial differential equations, Applicable Analysis, 90(1), 2011, 85–102.
Glatt-Holtz, N. and Temam, R., Pathwise solutions of the 2-D stochastic primitive equations, Applied Mathematics and Optimization, 63(3), 2011, 401–433.
Glatt-Holtz, N., Temam, R. and Tribbia, J., Some remarks on the role of stochastic parameterization in the equations of the ocean and atmosphere, in preparation.
Glatt-Holtz, N., Temam, R. and Wang C., Numerical analysis of the stochastic Navier-Stokes equations: Stability and convergence results, in preparation.
Glatt-Holtz, N. and Vicol, V. C., Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., 42(1), 2014, 80–145.
Glatt-Holtz, N. and Ziane, M., The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin, Dyn. Syst. Ser. B, 10(4), 2008, 801–822.
Hasselmann, K., Stochastic climate models, part I: Theory, Tellus, 28, 1976, 474–485.
Horsthemke, W. and Lefever, R., Noise-induced transitions: Theory and applications in physics, chemistry and biology, Springer-Verlag, New York, 1984.
Kobelkov, G. M., Existence of a solution “in the large” for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, 343(4), 2006, 283–286.
Kobelkov, G. M., Existence of a solution “in the large” for ocean dynamics equations, J. Math. Fluid Mech., 9(4), 2007, 588–610.
Kloeden, P. and Platen, E., Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992.
Kuratowski, K. and Ryll-Nardzewski, C., A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 13, 1965, 397–403.
Karatzas, I. and Shreve, S. E., Brownian motion and stochastic calculus, 2nd edition, Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991.
Kukavica, I. and Ziane, M., On the regularity of the primitive equations of the ocean, Nonlinearity, 20(12), 2007, 2739–2753.
Leray, J. and Lions, J.-L., Quelques résulatats de Visik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder (in France), Bull. Soc. Math., 93, 1965, 97–107.
Leslie, D. C. and Quarini, G. L., The application of turbulence theory to the formulation of subgrid modelling procedures, Journal of Fluid Mechanics, 91, 1979, 65–91.
Lions, J.-L., Temam, R. and Wang, S. H., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5(2), 1992, 237–288.
Lions, J.-L., Temam, R. and Wang, S. H., On the equations of the large-scale ocean, Nonlinearity, 5(5), 1992, 1007–1053.
Lions, J.-L., Temam, R. and Wang, S., Models for the coupled atmosphere and ocean (CAO I,II), Comput. Mech. Adv., 1(1), 1993, 120.
Minty, G. J., Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29, 1962, 341–346.
Manna, U, Menaldi, J. L. and Sritharan, S. S., Stochastic 2-D Navier-Stokes equation with artificial compressibility, Commun. Stoch. Anal., 1(1), 2007, 123–139.
Menaldi, J. L. and Sritharan, S. S., Stochastic 2-D Navier-Stokes equation, Appl. Math. Optim., 46(1), 2002, 31–53.
Mason, P. J. and Thomson, D. J., Stochastic backscatter in large-eddy simulations of boundary layers, Journal of Fluid Mechanics, 242, 1992, 51–78.
Marion, M. and Temam, R., Navier-Stokes equations: theory and approximation, Handbook of numerical analysis, Vol. VI, Handb. Numer. Anal., VI, North-Holland, Amsterdam, 1998, 503–688. MR 1665429 (2000a:76002)
Øksendal, B., Stochastic Differential Equations, An Introduction with Applications, 6th edition, Universitext, Springer-Verlag, Berlin, 2003.
Penland, C. and Ewald, B. D., On modelling physical systems with stochastic models: Diffusion versus Lévy processes, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366(1875), 2008, 2457–2476.
Pedlosky, J., Geophysical uid Dynamics, Springer-Verlag, New York, 1982.
Penland, C., A stochastic approach to nonlinear dynamics: A review, Bulletin of the American Meteorological Society, 84, 2003, ES43–ES51.
Prévot, C. and Röockner, M., A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, 1905, Springer-Verlag, Berlin, 2007.
Penland, C. and Sardeshmukh, P. D., The optimal growth of tropical sea surface temperature anomalies, Journal of Climate, 8(8), 1995, 1999–2024.
Petcu, M., Temam, R. and Ziane, M., Some mathematical problems in geophysical fluid dynamics, Special Volume on Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, 14, Elsevier, 2008, 577–750.
Richardson, L. F., Weather prediction by numerical process, with a foreword by Peter Lynch, 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2007.
Rose, H. A., Eddy diffusivity, eddy noise and subgrid-scale modelling, Journal of Fluid Mechanics, 81, 1977, 719–734.
Rozovskii, B., Temam, R. and Tribbia, J., AIMWorkshop: Mathematical and Geophysical Fluid Dynamics, Analytical and Stochastic Methods, Palo Alto, 2006.
Rousseau, A, Temam, R. M. and Tribbia, J. J., Boundary value problems for the inviscid primitive equations in limited domains, Handbook of numerical analysis, Vol. XIV, Special volume: Computational methods for the atmosphere and the oceans, Handb. Numer. Anal., 14, Elsevier/North-Holland, Amsterdam, 2009, 481–575.
Revuz, D. and Yor, M., Continuous martingales and Brownian motion, 3rd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, Springer-Verlag, Berlin, 1999.
Schwartz, L, Radon measures on arbitrary topological spaces and cylindrical measures, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973, Tata Institute of Fundamental Research Studies in Mathematics, No. 6.
Temam, R., Sur l’approximation des solutions des équations de Navier-Stokes, C. R. Acad. Sci. Paris Sér. A-B, 262, 1966, A219–A221.
Temam, R., Une méthode d’approximation de la solution des équations de Navier-Stokes (in France), Bull. Soc. Math., 96 1968, 115–152.
Temam, R., Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983.
Temam, R., Navier-Stokes equations and nonlinear functional analysis, 2nd edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,1995.
Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, A. M. S., Providence, RI,2001.
Twardowska, K., An approximation theorem of Wong-Zakai type for stochastic Navier-Stokes equations, Rend. Sem. Mat. Univ. Padova, 96, 1996, 15–36.
Tessitore, G. and Zabczyk, J., Wong-Zakai approximations of stochastic evolution equations, J. Evol. Equ., 6(4), 2006, 621–655.
Wong, E. and Zakai, M., On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 3, 1965, 213–229.
Zidikheri, M. J. and Frederiksen, J. S., Stochastic subgrid-scale modelling for non-equilibrium geophysical ows, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1910), 2010, 145–160.