Time-dependent simulations of quantum waveguides using a time-splitting spectral method
Tài liệu tham khảo
Antoine, 2008, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., 4, 729
Appenzeller, 1996, Electron interference in a T-shaped quantum transistor based on Schottky-gate technology, Phys. Rev. B, 53, 9959, 10.1103/PhysRevB.53.9959
Arnold, 1998, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6, 313, 10.1155/1998/38298
Arnold, 2001, Mathematical concepts of open quantum boundary conditions, Transp. Theory Stat. Phys., 30, 561, 10.1081/TT-100105939
Arnold, 2003, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability, Commun. Math. Sci., 1, 501, 10.4310/CMS.2003.v1.n3.a7
Arnold, 2008, Transparent boundary conditions for quantum-waveguide simulations, Math. Comput. Simul., 79, 898, 10.1016/j.matcom.2008.02.002
Bao, 2002, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175, 487, 10.1006/jcph.2001.6956
Berenger, 1994, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185, 10.1006/jcph.1994.1159
Burgnies, 1999, An analysis of wave patterns in multiport quantum waveguide structures, J. Phys. D: Appl. Phys., 32, 706, 10.1088/0022-3727/32/6/017
Cheng, 2007, 3D quantum transport solver based on perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices, J. Comput. Phys., 227, 455, 10.1016/j.jcp.2007.07.028
Ehrhardt, 2001, Discrete transparent boundary conditions for the Schrödinger equation, Riv. Mat. Univ. Parma., 6, 57
Frigo, 2005, The design and implementation of FFTW3, Proc. IEEE, 93, 216, 10.1109/JPROC.2004.840301
Ge, 1998, Use of negative complex potential as absorbing potential, J. Chem. Phys., 108, 1429, 10.1063/1.475514
Han, 2007, Numerical solutions of Schrödinger equations in R3, Numer. Meth. Part. Diff. Eqs., 23, 511, 10.1002/num.20193
Hussain, 2000, Procedure for absorbing time-dependent wave functions at low kinetic energies and large bandwidths, Phys. Rev. A, 63, 012703, 10.1103/PhysRevA.63.012703
Jahnke, 2000, Error bounds for exponential operator splittings, BIT, 40, 735, 10.1023/A:1022396519656
Leforestier, 1983, Optical potential for laser induced dissociation, J. Chem. Phys., 78, 2334, 10.1063/1.445033
Lent, 1990, The quantum transmitting boundary method, J. Appl. Phys., 67, 6353, 10.1063/1.345156
Lubich, 1994, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 67, 365, 10.1007/s002110050033
Lubich, 2002, Fast convolution for non? Reflecting boundary conditions, SIAM J. Sci. Comput., 24, 161, 10.1137/S1064827501388741
Mahapatra, 1997, Negative imaginary potentials in time-dependent molecular scattering, J. Chem. Soc., Faraday Trans., 93, 773, 10.1039/a605778k
Nedjalkov, 2007, Ultrafast Wigner transport in quantum wires, J. Comput. Electron., 6, 235, 10.1007/s10825-006-0101-y
Neuhauser, 1989, The time-dependent Schrödinger equation: application of absorbing boundary conditions, J. Chem. Phys., 90, 4351, 10.1063/1.456646
A. Nissen, G. Kreiss, An optimized perfectly matched layer for the Schrödinger equation, Preprint, Uppsala Universitet, Sweden, 2009.
Pathria, 1990, Pseudo-spectral solution of nonlinear Schrödinger equation, J. Comput. Phys., 87, 108, 10.1016/0021-9991(90)90228-S
Persistence of Vision Raytracer (Version 3.6), http://www.povray.org.
Polizzi, 2002, Self-consistent three-dimensional models for quantum ballistic transport in open systems, Phys. Rev. B, 66, 245301, 10.1103/PhysRevB.66.245301
Polizzi, 2005, Subband decomposition approach for the simulation of quantum electron transport in nanostructures, J. Comput. Phys., 202, 150, 10.1016/j.jcp.2004.07.003
A. Schädle, Numerische Behandlung transparenter Randbedingungen für die Schrödinger-Gleichung, Master Thesis, Universität Tübingen, Germany, 1998.
Schmidt, 1995, Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation, Comput. Math. Appl., 29, 53, 10.1016/0898-1221(95)00037-Y
Shin, 2008, Three-dimensional quantum simulations of multigate nanowire field effect transistors, Math. Comput. Simul., 79, 1060, 10.1016/j.matcom.2007.10.007
Soffer, 2007, Open boundaries for the nonlinear Schrödinger equation, J. Comput. Phys., 225, 1218, 10.1016/j.jcp.2007.01.020
F. Sol, M. Macucci, U. Ravaioli, K. Hess, Theory for a quantum modulated transistor, J. Appl. Phys. 66 (2989) 3892–3906.
Svizhenko, 2002, Two-dimensional quantum mechanical modeling of nanotransistors, J. Appl. Phys., 91, 2343, 10.1063/1.1432117
Thean, 2001, Stark effect and single-electron charging in silicon nanocrystal quantum dots, J. Appl. Phys., 89, 2808, 10.1063/1.1334645
Tsuchiya, 1991, Wigner function formulation of quantum transport in electron waveguides and its application, Jpn. J. Appl. Phys., 30, 3853, 10.1143/JJAP.30.3853
Tsukada, 1990, Proposal of novel electron wave coupled devices, Appl. Phys. Lett., 56, 2527, 10.1063/1.102877
Venugopal, 2002, Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches, J. Appl. Phys., 92, 3730, 10.1063/1.1503165
Zheng, 2007, A perfectly matched layer approach to the nonlinear Schrödinger wave equation, J. Comput. Phys., 227, 537, 10.1016/j.jcp.2007.08.004