Giao thoa thời gian trễ

Massimo Tinto1, S. Dhurandhar2
1Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
2Inter Univesity Centre for Astronomy and Astrophysics, Ganeshkhind, Pune, 411 007, India

Tóm tắt

Tóm tắt

Các bộ phát hiện bức xạ hấp dẫn với hai nhánh bằng nhau cho phép đo pha với độ chính xác nhiều bậc thấp hơn độ ổn định pha nội tại của laser bơm sáng vào các nhánh của nó. Điều này xảy ra do tiếng ồn trong ánh sáng laser là chung cho cả hai nhánh, trải qua sự trễ hoàn toàn giống nhau, và do đó sẽ bị triệt tiêu khi chênh lệch tại bộ phát hiện quang. Trong tình huống này, những tiếng ồn bậc hai ở mức thấp hơn sẽ xác định hiệu suất tổng thể. Tuy nhiên, nếu hai nhánh có chiều dài khác nhau (điều này chắc chắn sẽ diễn ra với các giao thoa kế trên không gian), tiếng ồn laser sẽ trải qua các độ trễ khác nhau ở hai nhánh và do đó sẽ không triệt tiêu trực tiếp tại bộ phát hiện quang. Để giải quyết vấn đề này, một kỹ thuật liên quan đến giao thoa kế tần số sóng mang với độ dài nhánh không bằng và đọc ra sự khác biệt pha độc lập đã được đề xuất. Kỹ thuật này dựa vào việc dịch thời gian một cách hợp lý và kết hợp tuyến tính các phép đo Doppler độc lập, và vì lý do này, nó đã được gọi là giao thoa kế thời gian trễ (TDI). Bài báo này cung cấp một cái nhìn tổng quát về lý thuyết, các cơ sở toán học và các khía cạnh thực nghiệm liên quan đến việc triển khai TDI. Mặc dù có sự nhấn mạnh vào ứng dụng của TDI trong sứ mệnh ăng-ten laser giao thoa không gian (LISA) diễn ra xuyên suốt bài báo này, TDI có thể được tích hợp vào thiết kế của bất kỳ sứ mệnh nào trong tương lai nhằm tìm kiếm sóng hấp dẫn thông qua các phép đo giao thoa. Chúng tôi cố ý bỏ qua tất cả các khía cạnh lý thuyết mà các nhà phân tích dữ liệu sẽ cần xem xét khi phân tích các tổ hợp dữ liệu TDI.

Từ khóa


Tài liệu tham khảo

Aasi J et al (2015) Advanced LIGO. Class Quantum Grav 32:074001. https://doi.org/10.1088/0264-9381/32/7/074001

Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. https://doi.org/10.1103/PhysRevLett.116.061102

Accadia T et al (2012) Virgo: a laser interferometer to detect gravitational waves. J Instrum 7:P03012. https://doi.org/10.1088/1748-0221/7/03/P03012

Amaro-Seoane P et al (2017) Laser interferometer space antenna. ArXiv e-prints arXiv:1702.00786

Armstrong JW (2006) Low-frequency gravitational wave searches using spacecraft Doppler tracking. Living Rev Relativ 9:1. https://doi.org/10.12942/lrr-2006-1

Armstrong JW, Estabrook FB, Tinto M (1999) Time-delay interferometry for space-based gravitational wave searches. Astrophys J 527:814–826. https://doi.org/10.1086/308110

Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88:043007. https://doi.org/10.1103/PhysRevD.88.043007

Barnes JA, Chi AR, Cutler LS, Healey DJ, Leeson DB, McGunigal TE, Mullen JA, Smith WL, Sydnor RL, Vessot RFC, Winkler GMR (1971) Characterization of frequency stability. IEEE Trans Instrum Meas IM 20(2):105–120. https://doi.org/10.1109/TIM.1971.5570702

Bayle JB, Lilley M, Petiteau A, Halloin H (2019) Effect of filters on the time-delay interferometry residual laser noise for LISA. Phys Rev D 99:084023. https://doi.org/10.1103/PhysRevD.99.084023

Becker T, Weispfenning V (1993) Gröbner bases: a computational approach to commutative algebra, Graduate Texts in Mathematics, vol 141. Springer, New York. https://doi.org/10.1007/978-1-4612-0913-3

Bender PL, Hils D (1997) Confusion noise level due to galactic and extragalactic binaries. Class Quantum Grav 14:1439–1444. https://doi.org/10.1088/0264-9381/14/6/008

Burnett CM (2010) Development of an ultra-precise digital phasemeter for the LISA gravitational wave detector. Master’s Thesis, Lulea University of Technology, Kiruna, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-49924

Cornish NJ, Hellings RW (2003) The effects of orbital motion on LISA time delay interferometry. Class Quantum Grav 20:4851–4860. https://doi.org/10.1088/0264-9381/20/22/009

de Vine G, Ware B, McKenzie K, Spero RE, Klipstein WM, Shaddock DA (2010) Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys Rev Lett 104:211103. https://doi.org/10.1103/PhysRevLett.104.211103. arXiv:1005.2176

Dhurandhar SV (2009) Time-delay interferometry and the relativistic treatment of LISA optical links. J Phys Conf Ser 154:012047. https://doi.org/10.1088/1742-6596/154/1/012047. arXiv:0808.2696

Dhurandhar SV, Rajesh Nayak K, Vinet JY (2002) Algebraic approach to time-delay data analysis for LISA. Phys Rev D 65:102002. https://doi.org/10.1103/PhysRevD.65.102002

Dhurandhar SV, Vinet JY, Rajesh Nayak K (2008) General relativistic treatment of LISA optical links. Class Quantum Grav 25:245002. https://doi.org/10.1088/0264-9381/25/24/245002

Dhurandhar SV, Rajesh Nayak K, Vinet JY (2010) Time delay interferometry for LISA with one arm dysfunctional. Class Quantum Grav 27:135013. https://doi.org/10.1088/0264-9381/27/13/135013. arXiv:1001.4911

Estabrook F, Wahlquist H (1975) Response of Doppler spacecraft tracking to gravitational radiation. Gen Relativ Gravit 6:439–447. https://doi.org/10.1007/BF00762449

Estabrook FB, Tinto M, Armstrong JW (2000) Time-delay analysis of LISA gravitational wave data: elimination of spacecraft motion effects. Phys Rev D 62:042002. https://doi.org/10.1103/PhysRevD.62.042002

Esteban JJ, García AF, Barke S, Peinado A, Guzmán Cervantes F, Bykov I, Heinzel G, Danzmann K (2011) Experimental demonstration of weak-light laser ranging and data communication for LISA. Opt Express 19(17):15937–15946. https://doi.org/10.1364/OE.19.015937

Faller JE, Bender PL (1984) A possible laser gravitational wave experiment in space. In: Taylor BN, Phillips WD (eds) Precision measurement and fundamental constants II. NBS Special Publication, vol 617. U.S. Dept. of Commerce/National Bureau of Standards, Washington, DC, pp 689–690

Faller JE, Bender PL, Hall JL, Hils D, Vincent MA (1985) Space antenna for gravitational wave astronomy. In: Longdon N, Melita O (eds) Kilometric optical arrays in space, ESA Conference Proceedings, vol SP-226, ESA Publications Division, Noordwijk, pp 157–163

Faller JE, Bender PL, Hall JL, Hils D, Stebbins RT, Vincent MA (1989) An antenna for laser gravitational-wave observations in space. Adv Space Res 9:107–111. https://doi.org/10.1016/0273-1177(89)90014-8, COSPAR and IAU, 27th Plenary Meeting, 15th Symposium on Relativistic Gravitation, Espoo, Finland, 18–29 July 1988

Favaro A, Barbera F (eds) (1966) Le Opere di Galileo Galilei. Edizione Nazionale, vol 20

Finn LS (2001) Aperture synthesis for gravitational-wave data analysis: deterministic sources. Phys Rev D 63:102001. https://doi.org/10.1103/PhysRevD.63.102001. arXiv:gr-qc/0010033

Folkner WM, Hechler F, Sweetser TH, Vincent MA, Bender PL (1997) LISA orbit selection and stability. Class Quantum Grav 14:1405–1410. https://doi.org/10.1088/0264-9381/14/6/003

Gerberding O, Barke S, Bykov I, Danzmann K, Enggaard A, Esteban JJ, Gianolio A, Hansen TV, Heinzel G, Hornstrup A, Jennrich O, Kullmann J, Pedersen SM, Rasmussen T, Reiche1 J, Sodnik Z, Suess M (2013a) Breadboard model of the LISA phasemeter. In: Auger G, Binétruy P, Plagnol E (eds) The 9th LISA Symposium, ASP Conference Series, vol 467. Astronomical Society of the Pacific, San Francisco, pp 271–275

Gerberding O, Sheard B, Bykov I, Kullmann J, Esteban Delgado JJ, Danzmann K, Heinzel G (2013b) Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Class Quantum Grav 30:235029. https://doi.org/10.1088/0264-9381/30/23/235029

Giampieri G, Hellings RW, Tinto M, Faller JE (1996) Algorithms for unequal-arm Michelson interferometers. Opt Commun 123:669–678. https://doi.org/10.1016/0030-4018(95)00611-7

Grayson DR, Stillman ME (2019) Macaulay2: a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

Grüning P, Halloin H, Prat P, Baron S, Brossard J, Buy C, Petiteau A, Heinzel G, Bykov I (2015) Status of the eLISA on table (LOT) electro-optical simulator for space based, long arms interferometers. Exp Astron 39:281–302. https://doi.org/10.1007/s10686-015-9448-z. arXiv:1309.1059

Hall JL (2006) Nobel lecture: defining and measuring optical frequencies. Rev Mod Phys 78:1279–1295. https://doi.org/10.1103/RevModPhys.78.1279

Hänsch TW (2006) Nobel lecture: passion for precision. Rev Mod Phys 78:1297–1309. https://doi.org/10.1103/RevModPhys.78.1297

Hartwig O, Bayle JB (2020) Clock-jitter reduction in LISA time-delay interferometry combinations. ArXiv e-prints arXiv:2005.02430

Heinzel G, Esteban JJ, Barke S, Otto M, Wang Y, Garcia AF, Danzmann K (2011) Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication. Class Quantum Grav 28:094008. https://doi.org/10.1088/0264-9381/28/9/094008

Hellings RW (2001) Elimination of clock jitter noise in spaceborne laser interferometers. Phys Rev D 64:022002. https://doi.org/10.1103/PhysRevD.64.022002

Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Sci Rev 4(5):685–686. https://doi.org/10.1093/nsr/nwx116

Jenkins GM, Watts DG (1969) Spectral analysis and its applications. Holden-Day, San Francisco

Kreuzer M, Robbiano L (2000) Computational commutative algebra 1. Springer, Berlin. https://doi.org/10.1007/978-3-540-70628-1

Królak A, Tinto M, Vallisneri M (2004) Optimal filtering of the LISA data. Phys Rev D 70:022003. https://doi.org/10.1103/PhysRevD.70.022003, erratum ibid. 76, 069901 (2007). arXiv:gr-qc/0401108

Laakso TI, Välimäki V, Karjalainen M, Laine UK (1996) Splitting the unit delay. IEEE Signal Proc Mag 1(30):30–60. https://doi.org/10.1109/79.482137

Lee J, Lee K, Jang YS, Jang H, Han S, Lee SH, Kang KI, Lim CW, Kim YJ, Kim SW (2014) Testing of a femtosecond pulse laser in outer space. Sci Rep 4:5134. https://doi.org/10.1038/srep05134

Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch TW, Holzwarth R (2016) Space-borne frequency comb metrology. Optica 3(12):1381–1387. https://doi.org/10.1364/OPTICA.3.001381

Luo J, Chen LS, Duan HZ, Gong YG, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M, Shao CG, Toth VT, Tu HB, Wang Y, Wang Y, Yeh HC, Zhan MS, Zhang Y, Zharov V, Zhou ZB (2016) TianQin: a space-borne gravitational wave detector. Class Quantum Grav 33:035010. https://doi.org/10.1088/0264-9381/33/3/035010

Ma LS, Bi Z, Bartels A, Robertsson L, Zucco M, Windeler RS, Wilpers G, Oates C, Hollberg L, Diddams SA (2004) Optical frequency synthesis and comparison with uncertainty at the $$10^{-19}$$ level. Science 303(5665):1843–1845. https://doi.org/10.1126/science.1095092

Miller J (2010) Laboratory experiment shows that noise can be lessened for LISA. Phys Today 63:14–16. https://doi.org/10.1063/1.3463616

Mitryk SJ, Mueller G, Sanjuan J (2012) Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects. Phys Rev D 86:122006. https://doi.org/10.1103/PhysRevD.86.122006. arXiv:1205.1934

Muratore M, Vetrugno D, Vitale S (2020) Revisitation of time delay interferometry combinations that suppress laser noise in LISA. arXiv:2001.11221

Nayak KR, Koshti S, Dhurandhar SV, Vinet JY (2006) On the minimum flexing of LISA’s arms. Class Quantum Grav 23:1763–1778. https://doi.org/10.1088/0264-9381/23/5/017

Nelemans G, Yungelson LR, Portegies Zwart SF (2001) The gravitational wave signal from the galactic disk population of binaries containing two compact objects. Astron Astrophys 375:890–898. https://doi.org/10.1051/0004-6361:20010683. arXiv:astro-ph/0105221

Ni WT (2016) Gravitational wave detection in space. Int J Mod Phys D 25:1630001. https://doi.org/10.1142/S0218271816300019

Noble B (1969) Applied linear algebra. Prentice-Hall, Englewood Cliffs

Otto M, Heinzel G, Danzmann K (2012) TDI and clock noise removal for the split interferometry configuration of LISA. Class Quantum Grav 29:205003. https://doi.org/10.1088/0264-9381/29/20/205003

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

Prince TA, Tinto M, Larson SL, Armstrong JW (2002) LISA optimal sensitivity. Phys Rev D 66:122002. https://doi.org/10.1103/PhysRevD.66.122002. arXiv:gr-qc/0209039

Rajesh Nayak K, Vinet JY (2005) Algebraic approach to time-delay data analysis: orbiting case. Class Quantum Grav 22:S437–S443. https://doi.org/10.1088/0264-9381/22/10/040

Rajesh Nayak K, Dhurandhar SV, Pai A, Vinet JY (2003a) Optimizing the directional sensitivity of LISA. Phys Rev D 68:122001. https://doi.org/10.1103/PhysRevD.68.122001

Rajesh Nayak K, Pai A, Dhurandhar SV, Vinet JY (2003b) Improving the sensitivity of LISA. Class Quantum Grav 20:1217–1231

Romano JD, Woan G (2006) Principal component analysis for LISA: the time delay interferometry connection. Phys Rev D 73:102001. https://doi.org/10.1103/PhysRevD.73.102001

Selby SM (1964) Standard of mathematical tables. The Chemical Rubber Co., Cleveland

Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116:231102. https://doi.org/10.1103/PhysRevLett.116.231102

Shaddock DA (2004) Operating LISA as a Sagnac interferometer. Phys Rev D 69:022001. https://doi.org/10.1103/PhysRevD.69.022001

Shaddock DA, Tinto M, Estabrook FB, Armstrong JW (2003) Data combinations accounting for LISA spacecraft motion. Phys Rev D 68:061303. https://doi.org/10.1103/PhysRevD.68.061303

Shaddock DA, Ware B, Spero RE, Vallisneri M (2004) Postprocessed time-delay interferometry for LISA. Phys Rev D 70:081101(R). https://doi.org/10.1103/PhysRevD.70.081101

Shaddock D, Ware B, Spero RE, Klipstein B (2006) Overview of the LISA phasemeter. In: Merkowitz SM, Livas JC (eds) Laser interferometer space antenna: 6th international LISA Symposium, AIP Conference Proceedings, vol 873. American Institute of Physics, Melville, NY, pp 654–660. https://doi.org/10.1063/1.2405113

Shannon CE (1998) Communication in the presence of noise. Proc IEEE 86:0018-9219-98. https://doi.org/10.1109/JPROC.1998.659497

Spero R, Bachman B, de Vine G, Dickson J, Klipstein W, Ozawa T, McKenzie K, Shaddock D, Robison D, Sutton A, Ware B (2011) Progress in interferometry for LISA at JPL. Class Quantum Grav 28:094007. https://doi.org/10.1088/0264-9381/28/9/094007. arXiv:1102.0799

Summers D (2003) Algorithm tradeoffs, talk given at the 3rd progress meeting of the ESA funded LISA PMS Project. ESTEC, NL, February 2003

Sutton A, McKenzie K, Ware B, Shaddock DA (2010) Laser ranging and communications for LISA. Opt Express 18(20):20759–20773. https://doi.org/10.1364/OE.18.020759

Sylvestre J, Tinto M (2003) Noise characterization for LISA. Phys Rev D 68:102002. https://doi.org/10.1103/PhysRevD.68.102002

Thorne KS (1987) Gravitational radiation. In: Hawking S, Israel W (eds) 300 years of gravitation. Cambridge University Press, Cambridge, pp 330–458

Tinto M (1998) Spacecraft to spacecraft coherent laser tracking as a xylophone interferometer detector of gravitational radiation. Phys Rev D 58:102001. https://doi.org/10.1103/PhysRevD.58.102001

Tinto M (2002) The Cassini Ka-band gravitational wave experiments. Class Quantum Grav 19:1767–1773. https://doi.org/10.1088/0264-9381/19/7/373

Tinto M, Armstrong JW (1999) Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation. Phys Rev D 59:102003. https://doi.org/10.1103/PhysRevD.59.102003

Tinto M, de Araujo JCN (2016) Coherent observations of gravitational radiation with LISA and gLISA. Phys Rev D 94:081101. https://doi.org/10.1103/PhysRevD.94.081101

Tinto M, Estabrook FB (1995) Parallel beam interferometric detectors of gravitational waves. Phys Rev D 52:1749–1754. https://doi.org/10.1103/PhysRevD.52.1749

Tinto M, Hartwig O (2018) Time-delay interferometry and clock-noise calibration. Phys Rev D 98:042003. https://doi.org/10.1103/PhysRevD.98.042003

Tinto M, Yu N (2015) Time-delay interferometry with optical frequency comb. Phys Rev D 92:042002. https://doi.org/10.1103/PhysRevD.92.042002

Tinto M, Armstrong JW, Estabrook FB (2001) Discriminating a gravitational wave background from instrumental noise in the LISA detector. Phys Rev D 63:021101(R). https://doi.org/10.1103/PhysRevD.63.021101

Tinto M, Estabrook FB, Armstrong JW (2002a) Time-delay interferometry and LISA’s sensitivity to sinusoidal gravitational waves. Tech. rep., JPL / Caltech, Pasadena, CA. http://list.caltech.edu/doku.php?id=mission_documents

Tinto M, Estabrook FB, Armstrong JW (2002b) Time-delay interferometry for LISA. Phys Rev D 65:082003. https://doi.org/10.1103/PhysRevD.65.082003

Tinto M, Shaddock DA, Sylvestre J, Armstrong JW (2003) Implementation of time-delay interferometry for LISA. Phys Rev D 67:122003. https://doi.org/10.1103/PhysRevD.67.122003

Tinto M, Estabrook FB, Armstrong JW (2004) Time delay interferometry with moving spacecraft arrays. Phys Rev D 69:082001. https://doi.org/10.1103/PhysRevD.69.082001

Tinto M, Vallisneri M, Armstrong JW (2005) Time-delay interferometric ranging for space-borne gravitational-wave detectors. Phys Rev D 71:041101. https://doi.org/10.1103/PhysRevD.71.041101

Tinto M, Armstrong JW, Estabrook FB (2007) Modulator noise suppression in the LISA time-delay interferometric combinations. Class Quantum Grav 25:015008. https://doi.org/10.1088/0264-9381/25/1/015008

Tinto M, de Araujo JCN, Aguiar OD, Alves MES (2013) Searching for gravitational waves with a geostationary interferometer. Astropart Phys 48:50–60. https://doi.org/10.1016/j.astropartphys.2013.07.001

Vallisneri M (2005) Geometric time delay interferometry. Phys Rev D 72:042003. https://doi.org/10.1103/PhysRevD.72.042003. arXiv:gr-qc/0504145

Vallisneri M, Crowder J, Tinto M (2008) Sensitivity and parameter-estimation precision for alternate LISA configurations. Class Quantum Grav 25:065005. https://doi.org/10.1088/0264-9381/25/6/065005. arXiv:0710.4369

Vallisneri M, Bayle JB, Babak S, Petiteau A (2020) TDI-infinity: time-delay interferometry without delays. arXiv:2008.12343

Wang C (2013) FPGA-based, 4-channel, high-speed phasemeter for heterodyne interferometry. Master’s Thesis, University of Rochester, Rochester, NY. http://www.hajim.rochester.edu/me/projects/PIG/publications/downloads/

Wang Y, Keitel D, Babak S, Petiteau A, Otto M, Barke S, Kawazoe F, Khalaidovski A, Müller V, Schütze D, Wittel H, Danzmann K, Schutz BF (2013) Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space. Phys Rev D 88:104021. https://doi.org/10.1103/PhysRevD.88.104021

Wang Y, Heinzel G, Danzmann K (2014) First stage of LISA data processing: clock synchronization and arm-length determination via a hybrid-extended Kalman filter. Phys Rev D 90:064016. https://doi.org/10.1103/PhysRevD.90.064016. arXiv:1402.6222

Wilken T, Lezius M, Hänsch TW, Kohfeldt A, Wicht A, Schkolnik V, Krutzik M, Duncker H, Hellmig O, Windpassinger P, Sengstock K, Peters A, Holzwarth R (2013) A frequency comb and precision spectroscopy experiment in space. In: CLEO: 2013, Optical Society of America, p AF2H.5. https://doi.org/10.1364/CLEO_AT.2013.AF2H.5

Wolfram S (2014) Mathematica. http://www.wolfram.com/mathematica/