Giao thoa thời gian trễ
Tóm tắt
Các bộ phát hiện bức xạ hấp dẫn với hai nhánh bằng nhau cho phép đo pha với độ chính xác nhiều bậc thấp hơn độ ổn định pha nội tại của laser bơm sáng vào các nhánh của nó. Điều này xảy ra do tiếng ồn trong ánh sáng laser là chung cho cả hai nhánh, trải qua sự trễ hoàn toàn giống nhau, và do đó sẽ bị triệt tiêu khi chênh lệch tại bộ phát hiện quang. Trong tình huống này, những tiếng ồn bậc hai ở mức thấp hơn sẽ xác định hiệu suất tổng thể. Tuy nhiên, nếu hai nhánh có chiều dài khác nhau (điều này chắc chắn sẽ diễn ra với các giao thoa kế trên không gian), tiếng ồn laser sẽ trải qua các độ trễ khác nhau ở hai nhánh và do đó sẽ không triệt tiêu trực tiếp tại bộ phát hiện quang. Để giải quyết vấn đề này, một kỹ thuật liên quan đến giao thoa kế tần số sóng mang với độ dài nhánh không bằng và đọc ra sự khác biệt pha độc lập đã được đề xuất. Kỹ thuật này dựa vào việc dịch thời gian một cách hợp lý và kết hợp tuyến tính các phép đo Doppler độc lập, và vì lý do này, nó đã được gọi là giao thoa kế thời gian trễ (TDI). Bài báo này cung cấp một cái nhìn tổng quát về lý thuyết, các cơ sở toán học và các khía cạnh thực nghiệm liên quan đến việc triển khai TDI. Mặc dù có sự nhấn mạnh vào ứng dụng của TDI trong sứ mệnh ăng-ten laser giao thoa không gian (LISA) diễn ra xuyên suốt bài báo này, TDI có thể được tích hợp vào thiết kế của bất kỳ sứ mệnh nào trong tương lai nhằm tìm kiếm sóng hấp dẫn thông qua các phép đo giao thoa. Chúng tôi cố ý bỏ qua tất cả các khía cạnh lý thuyết mà các nhà phân tích dữ liệu sẽ cần xem xét khi phân tích các tổ hợp dữ liệu TDI.
Từ khóa
Tài liệu tham khảo
Aasi J et al (2015) Advanced LIGO. Class Quantum Grav 32:074001. https://doi.org/10.1088/0264-9381/32/7/074001
Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. https://doi.org/10.1103/PhysRevLett.116.061102
Accadia T et al (2012) Virgo: a laser interferometer to detect gravitational waves. J Instrum 7:P03012. https://doi.org/10.1088/1748-0221/7/03/P03012
Amaro-Seoane P et al (2017) Laser interferometer space antenna. ArXiv e-prints arXiv:1702.00786
Armstrong JW (2006) Low-frequency gravitational wave searches using spacecraft Doppler tracking. Living Rev Relativ 9:1. https://doi.org/10.12942/lrr-2006-1
Armstrong JW, Estabrook FB, Tinto M (1999) Time-delay interferometry for space-based gravitational wave searches. Astrophys J 527:814–826. https://doi.org/10.1086/308110
Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88:043007. https://doi.org/10.1103/PhysRevD.88.043007
Barnes JA, Chi AR, Cutler LS, Healey DJ, Leeson DB, McGunigal TE, Mullen JA, Smith WL, Sydnor RL, Vessot RFC, Winkler GMR (1971) Characterization of frequency stability. IEEE Trans Instrum Meas IM 20(2):105–120. https://doi.org/10.1109/TIM.1971.5570702
Bayle JB, Lilley M, Petiteau A, Halloin H (2019) Effect of filters on the time-delay interferometry residual laser noise for LISA. Phys Rev D 99:084023. https://doi.org/10.1103/PhysRevD.99.084023
Becker T, Weispfenning V (1993) Gröbner bases: a computational approach to commutative algebra, Graduate Texts in Mathematics, vol 141. Springer, New York. https://doi.org/10.1007/978-1-4612-0913-3
Bender PL, Hils D (1997) Confusion noise level due to galactic and extragalactic binaries. Class Quantum Grav 14:1439–1444. https://doi.org/10.1088/0264-9381/14/6/008
Burnett CM (2010) Development of an ultra-precise digital phasemeter for the LISA gravitational wave detector. Master’s Thesis, Lulea University of Technology, Kiruna, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-49924
Cornish NJ, Hellings RW (2003) The effects of orbital motion on LISA time delay interferometry. Class Quantum Grav 20:4851–4860. https://doi.org/10.1088/0264-9381/20/22/009
de Vine G, Ware B, McKenzie K, Spero RE, Klipstein WM, Shaddock DA (2010) Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys Rev Lett 104:211103. https://doi.org/10.1103/PhysRevLett.104.211103. arXiv:1005.2176
Dhurandhar SV (2009) Time-delay interferometry and the relativistic treatment of LISA optical links. J Phys Conf Ser 154:012047. https://doi.org/10.1088/1742-6596/154/1/012047. arXiv:0808.2696
Dhurandhar SV, Rajesh Nayak K, Vinet JY (2002) Algebraic approach to time-delay data analysis for LISA. Phys Rev D 65:102002. https://doi.org/10.1103/PhysRevD.65.102002
Dhurandhar SV, Vinet JY, Rajesh Nayak K (2008) General relativistic treatment of LISA optical links. Class Quantum Grav 25:245002. https://doi.org/10.1088/0264-9381/25/24/245002
Dhurandhar SV, Rajesh Nayak K, Vinet JY (2010) Time delay interferometry for LISA with one arm dysfunctional. Class Quantum Grav 27:135013. https://doi.org/10.1088/0264-9381/27/13/135013. arXiv:1001.4911
Estabrook F, Wahlquist H (1975) Response of Doppler spacecraft tracking to gravitational radiation. Gen Relativ Gravit 6:439–447. https://doi.org/10.1007/BF00762449
Estabrook FB, Tinto M, Armstrong JW (2000) Time-delay analysis of LISA gravitational wave data: elimination of spacecraft motion effects. Phys Rev D 62:042002. https://doi.org/10.1103/PhysRevD.62.042002
Esteban JJ, García AF, Barke S, Peinado A, Guzmán Cervantes F, Bykov I, Heinzel G, Danzmann K (2011) Experimental demonstration of weak-light laser ranging and data communication for LISA. Opt Express 19(17):15937–15946. https://doi.org/10.1364/OE.19.015937
Faller JE, Bender PL (1984) A possible laser gravitational wave experiment in space. In: Taylor BN, Phillips WD (eds) Precision measurement and fundamental constants II. NBS Special Publication, vol 617. U.S. Dept. of Commerce/National Bureau of Standards, Washington, DC, pp 689–690
Faller JE, Bender PL, Hall JL, Hils D, Vincent MA (1985) Space antenna for gravitational wave astronomy. In: Longdon N, Melita O (eds) Kilometric optical arrays in space, ESA Conference Proceedings, vol SP-226, ESA Publications Division, Noordwijk, pp 157–163
Faller JE, Bender PL, Hall JL, Hils D, Stebbins RT, Vincent MA (1989) An antenna for laser gravitational-wave observations in space. Adv Space Res 9:107–111. https://doi.org/10.1016/0273-1177(89)90014-8, COSPAR and IAU, 27th Plenary Meeting, 15th Symposium on Relativistic Gravitation, Espoo, Finland, 18–29 July 1988
Favaro A, Barbera F (eds) (1966) Le Opere di Galileo Galilei. Edizione Nazionale, vol 20
Finn LS (2001) Aperture synthesis for gravitational-wave data analysis: deterministic sources. Phys Rev D 63:102001. https://doi.org/10.1103/PhysRevD.63.102001. arXiv:gr-qc/0010033
Folkner WM, Hechler F, Sweetser TH, Vincent MA, Bender PL (1997) LISA orbit selection and stability. Class Quantum Grav 14:1405–1410. https://doi.org/10.1088/0264-9381/14/6/003
Gerberding O, Barke S, Bykov I, Danzmann K, Enggaard A, Esteban JJ, Gianolio A, Hansen TV, Heinzel G, Hornstrup A, Jennrich O, Kullmann J, Pedersen SM, Rasmussen T, Reiche1 J, Sodnik Z, Suess M (2013a) Breadboard model of the LISA phasemeter. In: Auger G, Binétruy P, Plagnol E (eds) The 9th LISA Symposium, ASP Conference Series, vol 467. Astronomical Society of the Pacific, San Francisco, pp 271–275
Gerberding O, Sheard B, Bykov I, Kullmann J, Esteban Delgado JJ, Danzmann K, Heinzel G (2013b) Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Class Quantum Grav 30:235029. https://doi.org/10.1088/0264-9381/30/23/235029
Giampieri G, Hellings RW, Tinto M, Faller JE (1996) Algorithms for unequal-arm Michelson interferometers. Opt Commun 123:669–678. https://doi.org/10.1016/0030-4018(95)00611-7
Grayson DR, Stillman ME (2019) Macaulay2: a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
Grüning P, Halloin H, Prat P, Baron S, Brossard J, Buy C, Petiteau A, Heinzel G, Bykov I (2015) Status of the eLISA on table (LOT) electro-optical simulator for space based, long arms interferometers. Exp Astron 39:281–302. https://doi.org/10.1007/s10686-015-9448-z. arXiv:1309.1059
Hall JL (2006) Nobel lecture: defining and measuring optical frequencies. Rev Mod Phys 78:1279–1295. https://doi.org/10.1103/RevModPhys.78.1279
Hänsch TW (2006) Nobel lecture: passion for precision. Rev Mod Phys 78:1297–1309. https://doi.org/10.1103/RevModPhys.78.1297
Hartwig O, Bayle JB (2020) Clock-jitter reduction in LISA time-delay interferometry combinations. ArXiv e-prints arXiv:2005.02430
Heinzel G, Esteban JJ, Barke S, Otto M, Wang Y, Garcia AF, Danzmann K (2011) Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication. Class Quantum Grav 28:094008. https://doi.org/10.1088/0264-9381/28/9/094008
Hellings RW (2001) Elimination of clock jitter noise in spaceborne laser interferometers. Phys Rev D 64:022002. https://doi.org/10.1103/PhysRevD.64.022002
Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Sci Rev 4(5):685–686. https://doi.org/10.1093/nsr/nwx116
Jenkins GM, Watts DG (1969) Spectral analysis and its applications. Holden-Day, San Francisco
Kreuzer M, Robbiano L (2000) Computational commutative algebra 1. Springer, Berlin. https://doi.org/10.1007/978-3-540-70628-1
Królak A, Tinto M, Vallisneri M (2004) Optimal filtering of the LISA data. Phys Rev D 70:022003. https://doi.org/10.1103/PhysRevD.70.022003, erratum ibid. 76, 069901 (2007). arXiv:gr-qc/0401108
Laakso TI, Välimäki V, Karjalainen M, Laine UK (1996) Splitting the unit delay. IEEE Signal Proc Mag 1(30):30–60. https://doi.org/10.1109/79.482137
Lee J, Lee K, Jang YS, Jang H, Han S, Lee SH, Kang KI, Lim CW, Kim YJ, Kim SW (2014) Testing of a femtosecond pulse laser in outer space. Sci Rep 4:5134. https://doi.org/10.1038/srep05134
Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch TW, Holzwarth R (2016) Space-borne frequency comb metrology. Optica 3(12):1381–1387. https://doi.org/10.1364/OPTICA.3.001381
Luo J, Chen LS, Duan HZ, Gong YG, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M, Shao CG, Toth VT, Tu HB, Wang Y, Wang Y, Yeh HC, Zhan MS, Zhang Y, Zharov V, Zhou ZB (2016) TianQin: a space-borne gravitational wave detector. Class Quantum Grav 33:035010. https://doi.org/10.1088/0264-9381/33/3/035010
Ma LS, Bi Z, Bartels A, Robertsson L, Zucco M, Windeler RS, Wilpers G, Oates C, Hollberg L, Diddams SA (2004) Optical frequency synthesis and comparison with uncertainty at the $$10^{-19}$$ level. Science 303(5665):1843–1845. https://doi.org/10.1126/science.1095092
Miller J (2010) Laboratory experiment shows that noise can be lessened for LISA. Phys Today 63:14–16. https://doi.org/10.1063/1.3463616
Mitryk SJ, Mueller G, Sanjuan J (2012) Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects. Phys Rev D 86:122006. https://doi.org/10.1103/PhysRevD.86.122006. arXiv:1205.1934
Muratore M, Vetrugno D, Vitale S (2020) Revisitation of time delay interferometry combinations that suppress laser noise in LISA. arXiv:2001.11221
Nayak KR, Koshti S, Dhurandhar SV, Vinet JY (2006) On the minimum flexing of LISA’s arms. Class Quantum Grav 23:1763–1778. https://doi.org/10.1088/0264-9381/23/5/017
Nelemans G, Yungelson LR, Portegies Zwart SF (2001) The gravitational wave signal from the galactic disk population of binaries containing two compact objects. Astron Astrophys 375:890–898. https://doi.org/10.1051/0004-6361:20010683. arXiv:astro-ph/0105221
Ni WT (2016) Gravitational wave detection in space. Int J Mod Phys D 25:1630001. https://doi.org/10.1142/S0218271816300019
Noble B (1969) Applied linear algebra. Prentice-Hall, Englewood Cliffs
Otto M, Heinzel G, Danzmann K (2012) TDI and clock noise removal for the split interferometry configuration of LISA. Class Quantum Grav 29:205003. https://doi.org/10.1088/0264-9381/29/20/205003
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge
Prince TA, Tinto M, Larson SL, Armstrong JW (2002) LISA optimal sensitivity. Phys Rev D 66:122002. https://doi.org/10.1103/PhysRevD.66.122002. arXiv:gr-qc/0209039
Rajesh Nayak K, Vinet JY (2005) Algebraic approach to time-delay data analysis: orbiting case. Class Quantum Grav 22:S437–S443. https://doi.org/10.1088/0264-9381/22/10/040
Rajesh Nayak K, Dhurandhar SV, Pai A, Vinet JY (2003a) Optimizing the directional sensitivity of LISA. Phys Rev D 68:122001. https://doi.org/10.1103/PhysRevD.68.122001
Rajesh Nayak K, Pai A, Dhurandhar SV, Vinet JY (2003b) Improving the sensitivity of LISA. Class Quantum Grav 20:1217–1231
Romano JD, Woan G (2006) Principal component analysis for LISA: the time delay interferometry connection. Phys Rev D 73:102001. https://doi.org/10.1103/PhysRevD.73.102001
Selby SM (1964) Standard of mathematical tables. The Chemical Rubber Co., Cleveland
Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116:231102. https://doi.org/10.1103/PhysRevLett.116.231102
Shaddock DA (2004) Operating LISA as a Sagnac interferometer. Phys Rev D 69:022001. https://doi.org/10.1103/PhysRevD.69.022001
Shaddock DA, Tinto M, Estabrook FB, Armstrong JW (2003) Data combinations accounting for LISA spacecraft motion. Phys Rev D 68:061303. https://doi.org/10.1103/PhysRevD.68.061303
Shaddock DA, Ware B, Spero RE, Vallisneri M (2004) Postprocessed time-delay interferometry for LISA. Phys Rev D 70:081101(R). https://doi.org/10.1103/PhysRevD.70.081101
Shaddock D, Ware B, Spero RE, Klipstein B (2006) Overview of the LISA phasemeter. In: Merkowitz SM, Livas JC (eds) Laser interferometer space antenna: 6th international LISA Symposium, AIP Conference Proceedings, vol 873. American Institute of Physics, Melville, NY, pp 654–660. https://doi.org/10.1063/1.2405113
Shannon CE (1998) Communication in the presence of noise. Proc IEEE 86:0018-9219-98. https://doi.org/10.1109/JPROC.1998.659497
Spero R, Bachman B, de Vine G, Dickson J, Klipstein W, Ozawa T, McKenzie K, Shaddock D, Robison D, Sutton A, Ware B (2011) Progress in interferometry for LISA at JPL. Class Quantum Grav 28:094007. https://doi.org/10.1088/0264-9381/28/9/094007. arXiv:1102.0799
Summers D (2003) Algorithm tradeoffs, talk given at the 3rd progress meeting of the ESA funded LISA PMS Project. ESTEC, NL, February 2003
Sutton A, McKenzie K, Ware B, Shaddock DA (2010) Laser ranging and communications for LISA. Opt Express 18(20):20759–20773. https://doi.org/10.1364/OE.18.020759
Sylvestre J, Tinto M (2003) Noise characterization for LISA. Phys Rev D 68:102002. https://doi.org/10.1103/PhysRevD.68.102002
Thorne KS (1987) Gravitational radiation. In: Hawking S, Israel W (eds) 300 years of gravitation. Cambridge University Press, Cambridge, pp 330–458
Tinto M (1998) Spacecraft to spacecraft coherent laser tracking as a xylophone interferometer detector of gravitational radiation. Phys Rev D 58:102001. https://doi.org/10.1103/PhysRevD.58.102001
Tinto M (2002) The Cassini Ka-band gravitational wave experiments. Class Quantum Grav 19:1767–1773. https://doi.org/10.1088/0264-9381/19/7/373
Tinto M, Armstrong JW (1999) Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation. Phys Rev D 59:102003. https://doi.org/10.1103/PhysRevD.59.102003
Tinto M, de Araujo JCN (2016) Coherent observations of gravitational radiation with LISA and gLISA. Phys Rev D 94:081101. https://doi.org/10.1103/PhysRevD.94.081101
Tinto M, Estabrook FB (1995) Parallel beam interferometric detectors of gravitational waves. Phys Rev D 52:1749–1754. https://doi.org/10.1103/PhysRevD.52.1749
Tinto M, Hartwig O (2018) Time-delay interferometry and clock-noise calibration. Phys Rev D 98:042003. https://doi.org/10.1103/PhysRevD.98.042003
Tinto M, Yu N (2015) Time-delay interferometry with optical frequency comb. Phys Rev D 92:042002. https://doi.org/10.1103/PhysRevD.92.042002
Tinto M, Armstrong JW, Estabrook FB (2001) Discriminating a gravitational wave background from instrumental noise in the LISA detector. Phys Rev D 63:021101(R). https://doi.org/10.1103/PhysRevD.63.021101
Tinto M, Estabrook FB, Armstrong JW (2002a) Time-delay interferometry and LISA’s sensitivity to sinusoidal gravitational waves. Tech. rep., JPL / Caltech, Pasadena, CA. http://list.caltech.edu/doku.php?id=mission_documents
Tinto M, Estabrook FB, Armstrong JW (2002b) Time-delay interferometry for LISA. Phys Rev D 65:082003. https://doi.org/10.1103/PhysRevD.65.082003
Tinto M, Shaddock DA, Sylvestre J, Armstrong JW (2003) Implementation of time-delay interferometry for LISA. Phys Rev D 67:122003. https://doi.org/10.1103/PhysRevD.67.122003
Tinto M, Estabrook FB, Armstrong JW (2004) Time delay interferometry with moving spacecraft arrays. Phys Rev D 69:082001. https://doi.org/10.1103/PhysRevD.69.082001
Tinto M, Vallisneri M, Armstrong JW (2005) Time-delay interferometric ranging for space-borne gravitational-wave detectors. Phys Rev D 71:041101. https://doi.org/10.1103/PhysRevD.71.041101
Tinto M, Armstrong JW, Estabrook FB (2007) Modulator noise suppression in the LISA time-delay interferometric combinations. Class Quantum Grav 25:015008. https://doi.org/10.1088/0264-9381/25/1/015008
Tinto M, de Araujo JCN, Aguiar OD, Alves MES (2013) Searching for gravitational waves with a geostationary interferometer. Astropart Phys 48:50–60. https://doi.org/10.1016/j.astropartphys.2013.07.001
Vallisneri M (2005) Geometric time delay interferometry. Phys Rev D 72:042003. https://doi.org/10.1103/PhysRevD.72.042003. arXiv:gr-qc/0504145
Vallisneri M, Crowder J, Tinto M (2008) Sensitivity and parameter-estimation precision for alternate LISA configurations. Class Quantum Grav 25:065005. https://doi.org/10.1088/0264-9381/25/6/065005. arXiv:0710.4369
Vallisneri M, Bayle JB, Babak S, Petiteau A (2020) TDI-infinity: time-delay interferometry without delays. arXiv:2008.12343
Wang C (2013) FPGA-based, 4-channel, high-speed phasemeter for heterodyne interferometry. Master’s Thesis, University of Rochester, Rochester, NY. http://www.hajim.rochester.edu/me/projects/PIG/publications/downloads/
Wang Y, Keitel D, Babak S, Petiteau A, Otto M, Barke S, Kawazoe F, Khalaidovski A, Müller V, Schütze D, Wittel H, Danzmann K, Schutz BF (2013) Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space. Phys Rev D 88:104021. https://doi.org/10.1103/PhysRevD.88.104021
Wang Y, Heinzel G, Danzmann K (2014) First stage of LISA data processing: clock synchronization and arm-length determination via a hybrid-extended Kalman filter. Phys Rev D 90:064016. https://doi.org/10.1103/PhysRevD.90.064016. arXiv:1402.6222
Wilken T, Lezius M, Hänsch TW, Kohfeldt A, Wicht A, Schkolnik V, Krutzik M, Duncker H, Hellmig O, Windpassinger P, Sengstock K, Peters A, Holzwarth R (2013) A frequency comb and precision spectroscopy experiment in space. In: CLEO: 2013, Optical Society of America, p AF2H.5. https://doi.org/10.1364/CLEO_AT.2013.AF2H.5
Wolfram S (2014) Mathematica. http://www.wolfram.com/mathematica/