Time Periodicity and Dynamical Stability in Two-Boson Systems

Brazilian Journal of Physics - Tập 43 - Trang 5-12 - 2013
Jose Reslen1
1Coordinación de Física, Universidad del Atlántico, Barranquilla, Colombia

Tóm tắt

We calculate the period of recurrence of dynamical systems comprising two interacting bosons. A number of theoretical issues related to this problem are discussed, in particular, the conditions for small periodicity. The knowledge gathered in this way is then used to propose a notion of dynamical stability based on the stability of the period. Dynamical simulations show good agreement with the proposed scheme. We also apply the results to the phenomenon known as coherent population trapping and find stability conditions for this specific case.

Tài liệu tham khảo

L. Barreira, in XIVth International Congress on Mathematical Physics, pp. 415–422 (2006) D.L. Shepelyansky, Phys. Rev. E 82, 055202(R) (2010) J.A. Yeazell, M. Mallalieu, C.R. Stroud, Phys. Rev. Lett. 64 (1990) J. Reslen, C.E. Creffield, T.S. Monteiro, Phys. Rev. A 77, 043621 (2008) J. De Luca, N. Guglielmi, T. Humphries and A. Politi J. Phys. A: Math. Gen. 43 205103 (2010). G. Casati, T. Prosen, Braz. J. Phys. 35, 233 (2005). A. Peres, Quantum Theory: Concepts and Methods, ed. by A.V.D Merwe (Kluwer Academic Publishers, 2002), pp. 358–368 M.C. De Oliveira, S.S. Mizrahi, V.V. Dodonov, J. Opt. B: Quant. Semiclas. Opt. 1, 610 (1999) P.P. Rohde, A. Fedrizzi, T.C. Ralph, J. Mod. Opt. 59, 710 (2012) S.M. Giampaolo, F. Illuminati, A. Di Lisi, G. Mazzarella, Int. J. Quant. Inf. 4, 507 (2006) C. Godsil, Elec. J. Comb. 18, 23 (2011) L. Cao, I. Brouzos, S. Zöllner, Schmelcher, New J. Phys. 13, 033032 (2011) L.J. Salazar, D.A. Guzmán, F.J. Rodrguez, L. Quiroga, Opt. Express 20, 4470–4483 (2012) B.M. Rodríguez-Lara, A. Zárate-Cárdenas, F. Soto-Eguibar, H.M. Moya-Cessa, arXiv:1207.6552 M.O. Scully, M.S. Zubairy, Quantum Optics, (Cambridge University Press, 1997), pp. 223–225