Time Optimal Control Problem of the 2D MHD Equations with Memory
Tóm tắt
In this paper, we study an optimal control problem for the 2D MHD equations with memory in bounded domains with Dirichlet boundary conditions, where the time needed to reach the desired state plays an essential role. We first prove the existence of optimal solutions. Then we establish the first-order necessary and second-order sufficient optimality conditions. The second-order optimality ones obtained in the paper seem to be optimal in the sense that the gap between them is minimal.
Tài liệu tham khảo
Agapito R, Schonbek M. Non-uniform decay of MHD equations with and without magnetic diffusion. Commun Partial Differ Eq 2007;32:1791–1812.
Anh CT, Son DT. Pullback attractors for non-autonomous 2D MHD equations on some unbounded domains. Ann Polon Math 2015;2(113):129–154.
Anh CT, Nguyet TM. Time optimal control of the unsteady 3D Navier-Stokes-Voigt equations. Appl Math Opt 2019;79(2):397–426.
Anh CT, Thanh DTP, Toan ND. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evol Equ Control Theory 2021;10(1):1–23.
Arada N, Raymond J-P. Time optimal problems with Dirichlet boundary controls. Discrete Contin Dyn Syst 2003;9:1549–1570.
Aubin J-P, Frankowska H. 1990. Set-valued Analysis, Birkhauser Boston.
Barbu V. The time optimal control of Navier-Stokes equations. Systems Control Lett 1997;30:93–100.
Bornia G, Gunzburger M, Manservisi S. A distributed control approach for the boundary optimal control of the steady MHD equations. Commun Comput Phys 2013;14(3):722–752.
Cao C, Wu J. Two regularity criteria for the 3D MHD equations. J Differ Eq 2010;248:2263–2274.
Caraballo T, Chueshov ID, Marín-Rubio P, Real J. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete Contin Dyn Syst 2007;18(2-3):253–270.
Carlier G, Houmia A, Tahraoui R. On Pontryagin’s principle for the optimal control of some state equations with memory. J Convex Anal 2010;17(3-4): 1007–1017.
Carlier G, Tahraoui R. On some optimal control problems governed by a state equation with memory. ESAIM Control Optim Calc Var 2008;14(4):725–743.
Chen Q, Miao C, Zhang Z. On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch Ration Mech Anal 2010;195: 561–578.
Confortola F, Mastrogiacomo E. Optimal control for stochastic heat equation with memory. Evol Equ Control Theory 2014;3(1):35–58.
Conti M, Marchini EM, Pata V. Global attractors for nonlinear viscoelastic equations with memory. Commun Pure Appl Anal 2016;15(5):1893–1913.
Cowling TG. Magnetohydrodynamics, 2nd. Bristol: Adam Hilger; 1976.
Dafermos CM. Asymptotic stability in viscoelasticity. Arch. Rational Mech Anal 1970;37:297–308.
Duvaut G, Lions J-L. 1972. Les Inéquations en Mécanique et Physique, Dunod, Paris.
Fattorini HO. Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Problems, North-Holland Mathematics Studies, 201. Amsterdam: Elsevier Science B.V.; 2005.
Fernández-Cara E. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete Contin Dyn Syst Ser S 2012;5:1021–1090.
Gal CG, Medjo TT. A Navier-Stokes-Voight model with memory. Math. Methods Appl Sci 2013;36(18):2507–2523.
Gala S. A new regularity criterion for the 3D MHD equations in \(\mathbb {R}^{3}\). Comm Pure Appl Anal 2012;11:1353–1360.
Giorgi C, Pata V, Marzocchi A. Asymptotic behavior of a semilinear problem in heat conduction with memory. NoDEA Nonlinear Differential Equations Appl 1998;5:333–354.
Gunzburger MD, Meir AJ, Peterson JS. On the existence, uniqueness and finite element approximation of solutions of the equations of stationary, incompressible, magnetohydrodynamics. Math Comput 1991;56:523–563.
Gunzburger M, Peterson J, Trenchea C. The velocity tracking problem for MHD flows with distributed magnetic field controls. Int J Pure Appl Math 2008;42:289–296.
Gunzburger M, Trenchea C. Analysis and discretization of an optimal control problem for the time-periodic MHD equations. J Math Anal Appl 2005;308: 440–466.
Jia X, Zhou Y. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic and Related Models 2012;5:505–516.
Gatti S, Miranville A, Pata V, Zelik S. Attractors for semilinear equations of viscoelasticity with very low dissipation. Rocky Mountain J Math 2008; 38:1117–1138.
Kim S. Gevrey class regularity of the magnetohydrodynamics equations. ANZIAM J 2002;43:397–408.
Jiang Y, Fan J, Nagayasu S, Nakamura G. 2020. Local solvability of an inverse problem to the Navier-Stokes equation with memory term, Vol. 36.
Kunisch K, Wachsmuth D. On time optimal control of the wave equation, its regularization and optimality system. ESAIM Control Optim Calc Var 2013; 19:317–336.
Kunisch K, Wang L. Time optimal control of the heat equation with pointwise control constraints. ESAIM Control Optim Calc Var 2013;19:460–485.
Kunisch K, Wang L. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete Contin Dyn Syst 2016;36:279–302.
Ladyzenskaya OA, Solonnikov VA. On the solvability of unsteady motion problems in magnetohydrodynamics. Dokl Akad. Nauk SSSR 1959;124:26–28.
Leuyacc YRS, Parejas JLC. Upper semicontinuity of global attractors for a viscoelastic equations with nonlinear density and memory effects. Math. Methods Appl Sci 2019;42(3):871–882.
Li S, Wang G. The time optimal control of the Boussinesq equations. Numer Funct Anal Optim 2003;24:163–180.
Miao C, Yuan B. On the well-posedness of the Cauchy problem for an MHD system in Besov spaces. Math Methods Appl Sci 2009;32:53–76.
Micu S, Roventa I, Tucsnak M. Time optimal boundary controls for the heat equation. J Funct Anal 2012;263:25–49.
Micu S, Temereanca LE. A time-optimal boundary controllability problem for the heat equation in a ball. Proc Roy Soc Edinburgh Sect A 2014;144: 1171–1189.
Munteanu I. Boundary stabilisation of the Navier-Stokes equation with fading memory. Internat J Control 2015;88(3):531–542.
Papageorgiou NS. Optimal control of nonlinear evolution equations with memory. Glas Mat Ser III 1991;26((46)(1–2)):113–126.
Phung DK, Wang G, Zhang X. On the existence of time optimal controls for linear evolution equations. Discrete Contin Dyn Syst Ser B 2007;8:925–941.
Phung DK, Wang L, Zhang C. Bang-bang property for time optimal control of semilinear heat equation. Ann Inst H Poincaré Anal. Non Linéaire 2014; 31:477–499.
Ravindran S. Real-time computational algorithm for optimal control of an MHD flow system. SIAM J Sci Comput 2005;26:1369–1388.
Robinson JC. Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. United Kingdom: Cambridge University Press; 2001.
Schonbek ME, Schonbek TP, Suli E. Large-time behaviour of solutions to the magneto-hydrodynamics equations. Math Ann 1996;304:717–756.
Sermange M, Temam R. Some mathematical questions related to the MHD equations. Commun Pure Appl Math 1983;36:635–664.
Song X, Xiong Y. Pullback attractors for 2D MHD equations with delays. J Math Phys 2021;62(7):29. Paper No. 072704.
Temam R. 1979. Navier-Stokes Equations: Theory and Numerical Analysis, 2nd edition, Amsterdam, North-Holland.
Tröltzsch F. 2010. Optimal control of partial differential equations. Theory, Methods and Applications, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence.
Tröltzsch F, Wachsmuth D. Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations. ESAIM Control Optim Calc Var 2006;12:93–119.
Toan ND. Optimal control of nonclassical diffusion equations with memory. Acta Appl Math 2020;169:533–558.
Wang G. The existence of time optimal control of semilinear parabolic equations. Systems Control Lett 2004;53:171–175.
Wang G, Zuazua E. On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J Control Optim 2012;50: 2938–2958.
Wachsmuth D. 2006. Optimal control of the unsteady Navier-Stokes equations. PhD thesis, TU Berlin.
Zhao C, Li K. On existence, uniqueness and lr-exponential stability for stationary solutions to the MHD equations in three-dimensional domains. ANZIAM J 2004;46:95–109.
Zheng J, Wang Y. Time optimal controls of the FitzHugh-Nagumo equation with internal control. J Dyn Control Syst 2013;19:483–501.