TiO2 photocatalysis: Design and applications

Kazuya Nakata1,2, Akira Fujishima1,2
1Photocatalyst Group, Kanagawa Academy of Science and Technology, KSP Building East 412, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
2Research Institute for Science and Technology, Energy and Environment Photocatalyst Research Division, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 1, 1, 10.1016/S1389-5567(00)00002-2

Fujishima, 2000, TiO2 photocatalysts and diamond electrodes, Electrochim. Acta, 45, 4683, 10.1016/S0013-4686(00)00620-4

Fujishima, 2008, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001

Hashimoto, 2005, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., 44, 8269, 10.1143/JJAP.44.8269

Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0

Kudo, 2009, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Maeda, 2011, Photocatalytic water splitting using semiconductor particles: history and recent developments, J. Photochem. Photobiol. C, 12, 237, 10.1016/j.jphotochemrev.2011.07.001

Ryu, 2010, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photochem. Photobiol. C, 11, 179, 10.1016/j.jphotochemrev.2011.02.003

Inoue, 1979, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277, 637, 10.1038/277637a0

Caballero, 2009, Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light, J. Photochem. Photobiol. A, 202, 92, 10.1016/j.jphotochem.2008.11.005

Cai, 1991, Photokilling of malignant cells with ultrafine TiO2 powder, Bull. Chem. Soc. Japan, 4, 1268, 10.1246/bcsj.64.1268

Matsunaga, 1985, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, 211, 10.1111/j.1574-6968.1985.tb00864.x

McCullagh, 2007, The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review, Res. Chem. Intermed., 33, 359, 10.1163/156856707779238775

Peller, 2007, TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light, J. Photochem. Photobiol. A, 186, 212, 10.1016/j.jphotochem.2006.08.009

Sunada, 1998, Bactericidal and detoxification effects of TiO2 thin film photocatalysts, Environ. Sci. Technol., 32, 726, 10.1021/es970860o

Sunada, 2003, Studies on photokilling of bacteria on TiO2 thin film, J. Photochem. Photobiol. A, 156, 227, 10.1016/S1010-6030(02)00434-3

Sunada, 2003, Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination, Environ. Sci. Technol., 37, 4785, 10.1021/es034106g

Wolfrum, 2002, Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces, Environ. Sci. Technol., 36, 3412, 10.1021/es011423j

Fujishima, 1999

1986

1989

1993

Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004

A. Fujishima, D.A. Tryk, M.S. In: A.J. Bard, S. Licht (Eds.), Encyclopedia of Electrochemistry, Vol. 6: Semiconductor Electrodes and Photoelectrochemistry, Weinheim, 2002.

Fujishima, 2006, Titanium dioxide photocatalysis: present situation and future approaches, C. R. Chim., 9, 750, 10.1016/j.crci.2005.02.055

Fujishima, 2007, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup, Int. J. Hydrogen Energ., 32, 2664, 10.1016/j.ijhydene.2006.09.009

Nakata, 2011, Visible light responsive electrospun TiO2 fibers embedded with WO3 nanoparticles, Chem. Lett., 40, 1161, 10.1246/cl.2011.1161

Nakata, 2011, Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate, Chem. Lett., 40, 1107, 10.1246/cl.2011.1107

Nakata, 2009, Electrospun fibers composed of Al2O3-TiO2 nanocrystals, J. Ceram. Soc. Japan, 117, 1203, 10.2109/jcersj2.117.1203

Kamat, 1993, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., 93, 267, 10.1021/cr00017a013

Heller, 1995, Chemistry and applications of photocatalytic oxidation of thin organic films, Acc. Chem. Res., 28, 503, 10.1021/ar00060a006

Mills, 1997, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A, 108, 1, 10.1016/S1010-6030(97)00118-4

Peral, 1997, Heterogeneous photocatalysis for purification, decontamination and deodorization of air, J. Chem. Technol. Biotechnol., 70, 117, 10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F

Tryk, 2000, Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim. Acta, 45, 2363, 10.1016/S0013-4686(00)00337-6

Nosaka, 2004, Singlet oxygen formation in photocatalytic TiO2 aqueous suspension, PCCP, 6, 2917, 10.1039/b405084c

Nosaka, 2003, Photocatalytic [radical dot]OH radical formation in TiO2 aqueous suspension studied by several detection methods, PCCP, 5, 4731, 10.1039/B307433A

Jańczyk, 2006, Singlet oxygen photogeneration at surface modified titanium dioxide, J. Am. Chem. Soc., 128, 15574, 10.1021/ja065970m

Nosaka, 2002, Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method, PCCP, 4, 1088, 10.1039/b108441k

Nosaka, 2003, Photoinduced changes of adsorbed water on a TiO2 photocatalytic film as studied by 1H NMR spectroscopy, J. Phys. Chem. B, 107, 12042, 10.1021/jp035526v

Wang, 1997, Light-induced amphiphilic surfaces, Nature, 388, 431, 10.1038/41233

Sakai, 1995, Local detection of photoelectrochemically produced H2O2 with a “Wired” horseradish peroxidase microsensor, J. Phys. Chem., 99, 11896, 10.1021/j100031a017

Ikeda, 1997, Photocatalytic reactions involving radical chain reactions using microelectrodes, J. Phys. Chem. B, 101, 2617, 10.1021/jp9627281

Chen, 2006, Synthesis of titanium dioxide (TiO2) nanomaterials, J. Nanosci. Nanotechnol., 6, 906, 10.1166/jnn.2006.160

Bai, 2010, Hierarchically multifunctional TiO2 nano-thorn membrane for water purification, Chem. Commun., 46, 6542, 10.1039/c0cc01143f

Chen, 2011, Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst, Chem. Commun., 47, 2631, 10.1039/c0cc04471g

Chen, 2010, TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties, Chem. Commun., 46, 8252, 10.1039/c0cc02973d

Chen, 2010, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage, J. Am. Chem. Soc., 132, 6124, 10.1021/ja100102y

Dai, 2009, Synthesis of anatase TiO2 nanocrystals with exposed {001} facets, Nano Lett., 9, 2455, 10.1021/nl901181n

Fang, 2011, Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets, Chem. Eur. J., 17, 1423, 10.1002/chem.201002582

Ho, 2006, Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chem. Commun., 14, 1115, 10.1039/b515513d

Kondo, 2008, Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres, Langmuir, 24, 547, 10.1021/la702157r

Li, 2007, Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J. Am. Chem. Soc., 129, 8406, 10.1021/ja072191c

Li, 2010, Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active {100} facets, Chem. Commun., 46, 2301, 10.1039/b923755k

Li, 2006, Large-scale fabrication of TiO2 hierarchical hollow spheres, Inorg. Chem., 45, 3493, 10.1021/ic0602502

Liu, 2011, Mesoporous TiO2 core shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism, Langmuir, 27, 8500, 10.1021/la201547g

Liu, 2010, Flower-like TiO2 nanostructures with exposed {001} facets: facile synthesis and enhanced photocatalysis, Nanoscale, 2, 1115, 10.1039/c0nr00050g

Liu, 2010, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets, J. Am. Chem. Soc., 132, 11914, 10.1021/ja105283s

Liu, 2009, Spontaneous construction of photoactive hollow TiO2 microspheres and chains, Nanotechnology, 20, 325606, 10.1088/0957-4484/20/32/325606

Lü, 2010, A general preparation strategy for hybrid TiO2 hierarchical spheres and their enhanced solar energy utilization efficiency, Adv. Mater., 22, 3719, 10.1002/adma.201001008

Wang, 2010, Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures, Langmuir, 26, 12841, 10.1021/la100910u

Wang, 2002, Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates, Chem. Mater., 14, 4827, 10.1021/cm020685x

Wen, 2007, Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: formation mechanism and characterization of surface properties, Langmuir, 23, 11782, 10.1021/la701632t

Xiang, 2011, Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets, Chem. Commun., 47, 4532, 10.1039/c1cc10501a

Zheng, 2010, Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity, Chem. Eur. J., 16, 11266, 10.1002/chem.201001280

Zheng, 2009, Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets, Chem. Eur. J., 15, 12576, 10.1002/chem.200902438

Cozzoli, 2003, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods, J. Am. Chem. Soc., 125, 14539, 10.1021/ja036505h

Feng, 2005, The fabrication and switchable superhydrophobicity of TiO2 nanorod films, Angew. Chem. Int. Ed., 44, 5115, 10.1002/anie.200501337

Joo, 2005, Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli, J. Phys. Chem. B, 109, 15297, 10.1021/jp052458z

Nian, 2006, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, J. Phys. Chem. B, 110, 4193, 10.1021/jp0567321

Wang, 2007, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures, J. Phys. Chem. C, 111, 2709, 10.1021/jp066519k

Wu, 2004, Aligned TiO2 nanorods and nanowalls, J. Phys. Chem. B, 108, 3377, 10.1021/jp0361935

Wu, 2005, Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity, Langmuir, 21, 6995, 10.1021/la0500272

Xu, 2007, A general soft interface platform for the growth and assembly of hierarchical rutile TiO2 nanorods spheres, Cryst. Growth Des., 7, 1216, 10.1021/cg0609419

Yun, 2009, Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid, J. Phys. Chem. C, 113, 3050, 10.1021/jp808604t

An, 2008, Synthesis and characterization of thermally stable nanotubular TiO2 and its photocatalytic activity, J. Phys. Chem. C, 112, 18772, 10.1021/jp8031258

Cheng, 2010, Preparation of TiO2 hollow nanofibers by electrospining combined with sol–gel process, Cryst. Eng. Comm., 12, 2256, 10.1039/b922564a

Chuangchote, 2009, Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers, ACS Appl. Mater. Interfaces, 1, 1140, 10.1021/am9001474

Imai, 2000, Preparation of TiO2 fibers with well-organized structures, J. Mater. Chem., 10, 2005, 10.1039/b004543h

Kumar, 2007, Structural and optical properties of electrospun TiO2 nanofibers, Chem. Mater., 19, 6536, 10.1021/cm702601t

Li, 2003, Fabrication of titania nanofibers by electrospinning, Nano Lett., 3, 555, 10.1021/nl034039o

Li, 2004, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Lett., 4, 933, 10.1021/nl049590f

McCann, 2005, Electrospinning of nanofibers with core-sheath, hollow, or porous structures, J. Mater. Chem., 15, 735, 10.1039/b415094e

Peng, 2003, Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method, Chem. Mater., 15, 2011, 10.1021/cm020828f

Srivastava, 2007, Electrospinning of hollow and core/sheath nanofibers using a microfluidic manifold, Microfluid. Nanofluid., 4, 245, 10.1007/s10404-007-0177-0

Sun, 2008, Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film, Chem. Commun., 3293, 10.1039/b805072d

Wu, 2009, Preparation of photocatalytic anatase nanowire films byin situoxidation of titanium plate, Nanotechnology, 20, 185703, 10.1088/0957-4484/20/18/185703

Zhan, 2006, Long TiO2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties, J. Phys. Chem. B, 110, 11199, 10.1021/jp057372k

Zhang, 2009, High-performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment, Adv. Funct. Mater., 19, 3731, 10.1002/adfm.200901435

Zhao, 2010, Multichannel TiO2 hollow fibers with enhanced photocatalytic activity, J. Mater. Chem., 20, 5095, 10.1039/c0jm00484g

Albu, 2007, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications, Nano Lett., 7, 1286, 10.1021/nl070264k

Liu, 2007, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, J. Phys. Chem. C, 112, 253, 10.1021/jp0772732

Liu, 2008, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays, Environ. Sci. Technol., 42, 8547, 10.1021/es8016842

Macak, 2007, Self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small, 3, 300, 10.1002/smll.200600426

Mor, 2005, Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films, Adv. Funct. Mater., 15, 1291, 10.1002/adfm.200500096

Mor, 2006, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 90, 2011, 10.1016/j.solmat.2006.04.007

Paulose, 2007, TiO2 nanotube arrays of 1000μm length by anodization of titanium foil: phenol red diffusion, J. Phys. Chem. C, 111, 14992, 10.1021/jp075258r

Paulose, 2006, Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length, J. Phys. Chem. B, 110, 16179, 10.1021/jp064020k

Quan, 2005, Preparation of titania nanotubes and their environmental applications as electrode, Environ. Sci. Technol., 39, 3770, 10.1021/es048684o

Ruan, 2005, Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte, J. Phys. Chem. B, 109, 15754, 10.1021/jp052736u

Shankar, 2009, Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry, J. Phys. Chem. C, 113, 6327, 10.1021/jp809385x

Shankar, 2007, Highly-ordered TiO2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnology, 18, 065707, 10.1088/0957-4484/18/6/065707

Wang, 2009, Microstructured arrays of TiO2 nanotubes for improved photo-electrocatalysis and mechanical stability, Adv. Funct. Mater., 19, 1930, 10.1002/adfm.200801703

Wang, 2008, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization, Chem. Mater., 20, 1257, 10.1021/cm7028917

Yoriya, 2009, Self-assembled TiO2 nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening, Langmuir, 26, 417, 10.1021/la9020146

Yoriya, 2007, Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes, J. Phys. Chem. C, 111, 13770, 10.1021/jp074655z

Yu, 2010, Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films, J. Phys. Chem. C, 114, 19378, 10.1021/jp106324x

Zhang, 2007, Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation, Environ. Sci. Technol., 41, 6259, 10.1021/es070212x

Zhuang, 2007, Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity, Environ. Sci. Technol., 41, 4735, 10.1021/es0702723

Aoyama, 2012, Mesocrystal nanosheet of rutile TiO2 and its reaction selectivity as a photocatalyst, Cryst. Eng. Comm., 14, 1405, 10.1039/C1CE05774J

Bavykin, 2006, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Adv. Mater., 18, 2807, 10.1002/adma.200502696

Chen, 2011, Solvothermal synthesis, characterization, and formation mechanism of a single-layer anatase TiO2 nanosheet with a porous structure, Eur. J. Inorg. Chem., 2011, 754, 10.1002/ejic.201000999

Choy, 2002, Exfoliation and restacking route to anatase-layered titanate nanohybrid with enhanced photocatalytic activity, Chem. Mater., 14, 2486, 10.1021/cm010815m

Feng, 2011, Synthesis of single crystalline anatase TiO2 (001) tetragonal nanosheet-array films on fluorine-doped tin oxide substrate, J. Am. Ceram. Soc., 94, 310, 10.1111/j.1551-2916.2010.04266.x

Gan, 2011, TiO2 nanorod-derived synthesis of upstanding hexagonal kassite nanosheet arrays: an intermediate route to novel nanoporous TiO2 nanosheet arrays, Cryst. Growth Des., 12, 289, 10.1021/cg2010612

Han, 2009, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc., 131, 3152, 10.1021/ja8092373

Hosono, 2007, Synthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation, Langmuir, 23, 7447, 10.1021/la701117a

Katsumata, 2009, Photocatalytic activity of NaNbO3 thin films, J. Am. Chem. Soc., 131, 3856, 10.1021/ja900394x

Katsumata, 2010, Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets, ACS Appl. Mater. Interfaces, 2, 1236, 10.1021/am100091f

Kavan, 2004, Lithium storage in nanostructured TiO2 made by hydrothermal growth, Chem. Mater., 16, 477, 10.1021/cm035046g

Liu, 2009, Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets, J. Phys. Chem. C, 113, 21784, 10.1021/jp907749r

Liu, 2009, Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN, J. Am. Chem. Soc., 131, 12868, 10.1021/ja903463q

Liu, 2006, Preparation and properties of nanocrystalline alpha-Fe2O3-sensitized TiO2 nanosheets as a visible light photocatalyst, J. Am. Ceram. Soc., 89, 370, 10.1111/j.1551-2916.2005.00686.x

Manga, 2009, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties, Adv. Funct. Mater., 19, 3638, 10.1002/adfm.200900891

Matsuda, 2005, Formation and characterization of titania nanosheet-precipitated coatings via sol–gel process with hot water treatment under vibration, Chem. Mater., 17, 749, 10.1021/cm048135h

Peng, 2008, (101)-Exposed anatase TiO2 nanosheets, Chem. Mater., 20, 2426, 10.1021/cm071038e

Sakai, 2004, Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies, J. Am. Chem. Soc., 126, 5851, 10.1021/ja0394582

Sakai, 2006, Photoinduced hydrophilic conversion properties of titania nanosheets, J. Phys. Chem. B, 110, 6198, 10.1021/jp0556916

Sasaki, 1997, Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties, J. Phys. Chem. B, 101, 10159, 10.1021/jp9727658

Sasaki, 1996, Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it, J. Am. Chem. Soc., 118, 8329, 10.1021/ja960073b

Shibata, 2007, Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets, PCCP, 9, 2413, 10.1039/b618448k

Shichi, 2010, Development of photocatalytic self-cleaning glasses utilizing metal oxide nanosheets, Hyomen Gijutsu, 61, 30

Tachikawa, 2005, Photocatalytic electron transfer in hybrid titania nanosheets studied by nanosecond laser flash photolysis, Chem. Lett., 34, 1522, 10.1246/cl.2005.1522

Tanaka, 2003, Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals, Chem. Mater., 15, 3564, 10.1021/cm034307j

Umemura, 2006, Photocatalytic decomposition of an alkylammonium cation in a langmuir−blodgett film of a titania nanosheet, Langmuir, 22, 3870, 10.1021/la0530743

Wei, 2006, Synthesis and characterization of nanosheet-shaped titanium dioxide, J. Mater. Chem., 42, 529

Wen, 2011, Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets, Chem. Commun., 47, 4400, 10.1039/c0cc05798c

Xiang, 2010, Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties, Chem. Commun., 46, 6801, 10.1039/c0cc02327b

Xiang, 2011, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity, PCCP, 13, 4853, 10.1039/C0CP01459A

Xiang, 2011, Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity, Chem. Commun., 47, 6906, 10.1039/c1cc11740h

Yang, 2009, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc., 131, 4078, 10.1021/ja808790p

Yu, 2010, Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells, Nanoscale, 2, 2144, 10.1039/c0nr00427h

Yu, 2010, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets, J. Phys. Chem. C, 114, 13118, 10.1021/jp104488b

Arabatzis, 2002, Synthesis of porous nanocrystalline TiO2 foam, Nano Lett., 3, 249, 10.1021/nl0259028

Caruso, 1998, Porous “Coral-like” TiO2 structures produced by templating polymer gels, Langmuir, 14, 6333, 10.1021/la980696y

Fan, 2009, Polymer gel templating of free-standing inorganic monoliths for photocatalysis, Langmuir, 25, 5835, 10.1021/la8029837

Hasegawa, 2010, Facile preparation of hierarchically porous TiO2 monoliths, J. Am. Ceram. Soc., 93, 3110, 10.1111/j.1551-2916.2010.03831.x

Hasegawa, 2011, New hierarchically porous titania monoliths for chromatographic separation media, J. Sep. Sci., 34, 3004, 10.1002/jssc.201100538

Konishi, 2006, Monolithic TiO2 with controlled multiscale porosity via a template-free sol−gel process accompanied by phase separation, Chem. Mater., 18, 6069, 10.1021/cm0617485

Konishi, 2009, Sol–gel synthesis of macro–mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds, J. Chromatogr. A, 1216, 7375, 10.1016/j.chroma.2009.06.016

Kucheyev, 2005, Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2, J. Electron Spectrosc. Relat. Phenom., 144–147, 609, 10.1016/j.elspec.2005.01.157

Lai, 2008, Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films, Langmuir, 24, 3867, 10.1021/la7031863

Liu, 2009, Hierarchically macro-/mesoporous Ti−Si oxides photonic crystal with highly efficient photocatalytic capability, Environ. Sci. Technol., 43, 9425, 10.1021/es902462c

Matsushita, 1998, New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles, Langmuir, 14, 6441, 10.1021/la981106z

Ren, 2006, Photocatalytic degradation of gaseous organic species on photonic band-gap titania, Environ. Sci. Technol., 40, 7029, 10.1021/es061045o

Sharma, 1996, The role of N,N-dimethylaniline in the formation of titania gel monolith by sol-gel method, J. Mater. Chem., 31, 773

Tian, 2011, 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property, Cryst. Eng. Comm., 13, 2994, 10.1039/c0ce00851f

Tomás, 2008, Optical characterization of sol gel TiO2 monoliths doped with Brilliant Green, Eur. Phys. J., 153, 255

Wijnhoven, 1998, Preparation of photonic crystals made of air spheres in titania, Science, 281, 802, 10.1126/science.281.5378.802

Wijnhoven, 2001, Fabrication and characterization of large macroporous photonic crystals in titania, Chem. Mater., 13, 4486, 10.1021/cm0111581

Yao, 1999, Preparation and characterization of mesoporous titania gel-monolith, J. Mater. Chem., 34, 5983

Yu, 2007, Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania, J. Phys. Chem. C, 111, 10582, 10.1021/jp0707889

Yu, 2007, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania, Adv. Funct. Mater., 17, 1984, 10.1002/adfm.200600933

Hou, 2005, Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells, J. Mater. Chem., 15, 2414, 10.1039/b417465h

Ahn, 2010, Structure control of organized mesoporous TiO2 films templated by graft copolymers for dye-sensitized solar cells, Chem. Commun., 46, 1935, 10.1039/B919215H

Yang, 2010, Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells, J. Mater. Chem., 20, 2870, 10.1039/b923105f

Ding, 2011, TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage, J. Mater. Chem., 21, 1677, 10.1039/C0JM03650A

Szeifert, 2010, Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion, J. Am. Chem. Soc., 132, 12605, 10.1021/ja101810e

Periyat, 2010, Rapid microwave synthesis of mesoporous TiO2 for electrochromic displays, J. Mater. Chem., 20, 3650, 10.1039/b924341k

Yao, 2003, Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers, Chem. Mater., 15, 1860, 10.1021/cm0210795

Lee, 2003, Characterization of nano-structured poly(ɛ-caprolactone) nonwoven mats via electrospinning, Polymer, 44, 1287, 10.1016/S0032-3861(02)00820-0

Almquist, 2002, Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity, J. Catal., 212, 145, 10.1006/jcat.2002.3783

Kim, 2006, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers, Nano Letters, 6, 2009, 10.1021/nl061197h

Park, 2010, Structure and CO gas sensing properties of electrospun TiO2 nanofibers, Mater. Lett., 64, 255, 10.1016/j.matlet.2009.10.052

Moon, 2010, Pd-doped TiO2 nanofiber networks for gas sensor applications, Sens. Actuat. B: Chem., 149, 301, 10.1016/j.snb.2010.06.033

Song, 2005, Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment, Synth. Met., 155, 635, 10.1016/j.synthmet.2005.08.018

Song, 2005, New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells, Synth. Met., 153, 77, 10.1016/j.synthmet.2005.07.129

Kumar, 2007, Structural and optical properties of electrospun TiO2 nanofibers, Chem. Mater., 19, 6536, 10.1021/cm702601t

Mu Jo, 2005, Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells, J. Macromol. Sci. Part A, 42, 1529, 10.1080/10601320500229103

Nam, 2010, Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries, ACS Appl. Mater. Interfaces, 2, 2046, 10.1021/am100319u

Ramakrishna, 2005

Alves, 2009, Photocatalytic activity of titania fibers obtained by electrospinning, Mater. Res. Bull., 44, 312, 10.1016/j.materresbull.2008.06.001

Zhao, 2010, Multichannel TiO2 hollow fibers with enhanced photocatalytic activity, J. Mater. Chem., 20, 5099, 10.1039/c0jm00484g

Grimes, 2009

Wang, 1997, Light-induced amphiphilic surfaces, Nature, 388, 432, 10.1038/41233

Nakata, 2011, Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles, Langmuir, 27, 3275, 10.1021/la200438p

Nakata, 2009, Fabrication and application of TiO2-based superhydrophilic-superhydrophobic patterns on titanium substrates for offset printing, Chem. Asian J., 4, 984, 10.1002/asia.200900005

Nishimoto, 2009, TiO2-based superhydrophobic-superhydrophilic pattern: fabrication via ink-jet technique and application to offset printing plate, Appl. Sur. Sci., 255, 6221, 10.1016/j.apsusc.2009.01.084

Suda, 2000, A new technology of reusable plate using TiO2 photocatalysis, Proc. Tech. Assoc. Graphic Arts, 125

Fujishima, 1999

Nakata, 2009, Fabrication of micro-patterned TiO2 thin film incorporating Ag nanoparticles, Mater. Lett., 63, 1628, 10.1016/j.matlet.2009.04.035

Gillmor, 2000, Hydrophilic/hydrophobic patterned surfaces as templates for DNA arrays, Langmuir, 16, 7223, 10.1021/la991026a

Gau, 1999, Liquid morphologies on structured surfaces: from microchannels to microchips, Science, 283, 46, 10.1126/science.283.5398.46

Cao, 2011

Köhler, 2004

Zhang, 2007, Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic−superhydrophilic patterning, J. Phys. Chem. C, 111, 14521, 10.1021/jp0744432

Zhang, 2006, Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces, Langmuir, 22, 9477, 10.1021/la0618869

Dibbell, 2007, Photocatalytic patterning of monolayers for the site-selective deposition of quantum dots onto TiO2 surfaces, Langmuir, 23, 3432, 10.1021/la063161a

Gu, 2002, Patterning of a colloidal crystal film on a modified hydrophilic and hydrophobic surface, Angew. Chem., 114, 2171, 10.1002/1521-3757(20020617)114:12<2171::AID-ANGE2171>3.0.CO;2-Q

Lai, 2008, Superhydrophilic–superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography, Electrochem. Commun., 10, 387, 10.1016/j.elecom.2007.12.020

Nakata, 2010, Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate, Langmuir, 26, 11628, 10.1021/la101947y

Nakata, 2010, UV/thermally-driven rewritable wettability patterns on TiO2-PDMS composite films, ACS Appl. Mater. Interfaces, 2, 2485, 10.1021/am1005207