TiO2 nanoparticles' library toxicity (UV and non-UV exposure) – High-throughput in vivo transcriptomics reveals mechanisms

NanoImpact - Tập 30 - Trang 100458 - 2023
Susana I.L. Gomes1, Carlos P. Roca2, Suman Pokhrel3,4, Lutz Mädler3,4, Janeck J. Scott-Fordsmand2, Mónica J.B. Amorim1
1Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
2Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, DK-8000, Aarhus, Denmark
3Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany
4Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany

Tài liệu tham khảo

Alexa, 2006, Improved scoring of functional groups from gene expression data by decorrelating GO graph structure, Bioinformatics, 22, 1600, 10.1093/bioinformatics/btl140 Amorim, 2021, Annelid genomes: Enchytraeus crypticus, a soil model for the innate (and primed) immune system, Lab Anim. (NY)., 50, 285, 10.1038/s41684-021-00831-x Amorim, 2022, On virus and nanomaterials – lessons learned from the innate immune system – ACE activation in the invertebrate model Enchytraeus crypticus, J. Hazard. Mater., 436, 10.1016/j.jhazmat.2022.129173 Bannuscher, 2020, Metabolomics profiling to investigate nanomaterial toxicity in vitro and in vivo, Nanotoxicology, 14, 807, 10.1080/17435390.2020.1764123 Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., 57, 289 Bigorgne, 2011, Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida, Environ. Pollut., 159, 2698, 10.1016/j.envpol.2011.05.024 Bo, 2014, Metabolomic analysis on the toxicological effects of TiO 2 nanoparticles in mouse fibroblast cells: from the perspective of perturbations in amino acid metabolism, Toxicol. Mech. Methods, 24, 461, 10.3109/15376516.2014.939321 Burk, 2018, Fe-doped ZnO nanoparticle toxicity: assessment by a new generation of nanodescriptors, Nanoscale, 10, 21985, 10.1039/C8NR05220D Cimpean, 2015, Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways, Int. J. Nanomedicine, 10, 6455, 10.2147/IJN.S92019 Cui, 2011, Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles, J. Biomed. Mater. Res. Part A, 96A, 221, 10.1002/jbm.a.32976 Fourches, 2010, Quantitative nanostructure−activity relationship modeling, ACS Nano, 4, 5703, 10.1021/nn1013484 Gao, 2013, Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice, J. Hazard. Mater., 258–259, 133, 10.1016/j.jhazmat.2013.04.046 George, 2011, Role of Fe doping in tuning the band gap of TiO 2 for the photo-oxidation-induced cytotoxicity paradigm, J. Am. Chem. Soc., 133, 11270, 10.1021/ja202836s Gomes, 2015, Effect of 10 different TiO 2 and ZrO 2 (nano)materials on the soil invertebrate Enchytraeus crypticus, Environ. Toxicol. Chem., 34, 2409, 10.1002/etc.3080 Gomes, 2017, High-throughput transcriptomics reveals uniquely affected pathways: AgNPs, PVP-coated AgNPs and ag NM300K case studies, Environ. Sci. Nano, 4, 929, 10.1039/C6EN00652C Gomes, 2018, High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO 3 , and Cu salt aged): transcriptomics in Enchytraeus crypticus, Nanotoxicology, 12, 325, 10.1080/17435390.2018.1446559 Gomes, 2018, Mechanisms of (photo)toxicity of TiO 2 nanomaterials (NM103, NM104, NM105): using high-throughput gene expression in Enchytraeus crypticus, Nanoscale, 10, 21960, 10.1039/C8NR03251C Gomes, 2018, Identifying conserved UV exposure genes and mechanisms, Sci. Rep., 8, 8605, 10.1038/s41598-018-26865-9 Gomes, 2021, Machine learning and materials modelling interpretation of in vivo toxicological response to TiO 2 nanoparticles library (UV and non-UV exposure), Nanoscale, 13, 14666, 10.1039/D1NR03231C Gomes, 2021, Alternative test methods for (nano)materials hazards assessment: challenges and recommendations for regulatory preparedness, Nano Today, 40, 10.1016/j.nantod.2021.101242 Hartung, 2017, Systems toxicology: real world applications and opportunities, Chem. Res. Toxicol., 30, 870, 10.1021/acs.chemrestox.7b00003 Hou, 2017, Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna, Environ. Sci. Technol., 51, 12868, 10.1021/acs.est.7b03918 Hu, 2009, In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles, Sci. Total Environ., 407, 3070, 10.1016/j.scitotenv.2009.01.033 Huber, 2015, Orchestrating high-throughput genomic analysis with Bioconductor, Nat. Methods, 12, 115, 10.1038/nmeth.3252 ISO 16387, 2005, Soil quality - effects of pollutants on Enchytraeidae (Enchytraeus sp.). Determination of effects on reproduction and survival Jin, 2013, Metabolic profiling reveals disorder of carbohydrate metabolism in mouse fibroblast cells induced by titanium dioxide nanoparticles, J. Appl. Toxicol., 33, 1442, 10.1002/jat.2808 Jovanović, 2011, Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820), Ecotoxicol. Environ. Saf., 74, 675, 10.1016/j.ecoenv.2010.10.017 Jugan, 2012, Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells, Nanotoxicology, 6, 501, 10.3109/17435390.2011.587903 Kanehisa, 2016, KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res., 44, D457, 10.1093/nar/gkv1070 Lapied, 2011, Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil, Environ. Int., 37, 1105, 10.1016/j.envint.2011.01.009 Luo, 2013, Pathview: an R/Bioconductor package for pathway-based data integration and visualization, Bioinformatics, 29, 1830, 10.1093/bioinformatics/btt285 Luo, 2017, Pathview web: user friendly pathway visualization and data integration, Nucleic Acids Res., 45, W501, 10.1093/nar/gkx372 Mielke, 2013, Differential growth of and nanoscale TiO₂ accumulation in Tetrahymena thermophila by direct feeding versus trophic transfer from Pseudomonas aeruginosa, Appl. Environ. Microbiol., 79, 5616, 10.1128/AEM.01680-13 Moriya, 2007, KAAS: an automatic genome annotation and pathway reconstruction server, Nucleic Acids Res., 35, W182, 10.1093/nar/gkm321 Naatz, 2017, Safe-by-design CuO nanoparticles via Fe-doping, cu–O bond length variation, and biological assessment in cells and zebrafish embryos, ACS Nano, 11, 501, 10.1021/acsnano.6b06495 Naatz, 2020, Model-based Nanoengineered pharmacokinetics of Iron-doped copper oxide for Nanomedical applications, Angew. Chem., 132, 1844, 10.1002/ange.201912312 OECD 202, 2004 OECD 220, 2016, OECD guideline for the testing of chemicals no Papadiamantis, 2020, Predicting cytotoxicity of metal oxide nanoparticles using Isalos analytics platform, Nanomaterials, 10, 2017, 10.3390/nano10102017 Peng, 2020, Redox Activity and Nano–Bio Interactions Determine the Skin Injury Potential of Co 3 O 4 -Based Metal Oxide Nanoparticles toward Zebrafish, ACS Nano, 14, 4166, 10.1021/acsnano.9b08938 Philbrook, 2011, The effect of TiO2 and ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice, Toxicol. Appl. Pharmacol., 257, 429, 10.1016/j.taap.2011.09.027 Pokhrel, 2013, Custom-designed nanomaterial libraries for testing metal oxide toxicity, Acc. Chem. Res., 46, 632, 10.1021/ar300032q Puzyn, 2009, Toward the development of “Nano-QSARs”: advances and challenges, Small., 10.1002/smll.200900179 Puzyn, 2011, Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nat. Nanotechnol., 6, 175, 10.1038/nnano.2011.10 R Rasmussen, 2014, Titanium dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: characterisation and physico-chemical properties, JRC Sci. Pol. Rep. Ritchie, 2015, Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43, e47, 10.1093/nar/gkv007 Roca, 2017, Variation-preserving normalization unveils blind spots in gene expression profiling, Sci. Rep., 7, 42460, 10.1038/srep42460 Rombke, 1989, Aquatic toxicty test for enchytraeids, Hydrobiologia, 180, 235, 10.1007/BF00027556 Scott-Fordsmand, 2023, Using machine learning to make nanomaterials sustainable, Sci. Total Environ., 859, 10.1016/j.scitotenv.2022.160303 Shi, 2013, Titanium dioxide nanoparticles: a review of current toxicological data, Part. Fibre Toxicol., 10, 15, 10.1186/1743-8977-10-15 Smith, 2013, Peroxisomes take shape, Nat. Rev. Mol. Cell Biol., 14, 803, 10.1038/nrm3700 Sohm, 2015, Insight into the primary mode of action of TiO 2 nanoparticles on Escherichia coli in the dark, Proteomics, 15, 98, 10.1002/pmic.201400101 Su, 2015, Involvement of neurotrophins and related signaling genes in TiO 2 nanoparticle – induced inflammation in the hippocampus of mice, Toxicol. Res., 4, 344, 10.1039/C4TX00106K Tämm, 2016, Parametrization of nanoparticles: development of full-particle nanodescriptors, Nanoscale, 8, 16243, 10.1039/C6NR04376C Toropov, 2018, Towards the development of global nano-quantitative structure–property relationship models: Zeta potentials of metal oxide nanoparticles, Nanomaterials, 8, 243, 10.3390/nano8040243 Westheide, 1992, Two new terrestrial Enchytraeus species (Oligochaeta, Annelida), J. Nat. Hist., 26, 479, 10.1080/00222939200770311 Xia, 2011, Decreased dissolution of ZnO by Iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos, ACS Nano, 5, 1223, 10.1021/nn1028482