TiO2 films obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact

Solar Energy Materials and Solar Cells - Tập 93 - Trang 1728-1732 - 2009
I. Zumeta1, J.A. Ayllón2, B. González1, X. Domenech2, E. Vigil1,3
1Institute for Material Science and Technology, University of Havana, Colina Universitaria, Ciudad Habana 10 400, Cuba
2Chemistry Department, Autonomous University of Barcelona, 08290 Cerdanyola del Valles, Spain
3Physics Faculty, University of Havana, Colina Universitaria, Ciudad Habana 10 400, Cuba

Tài liệu tham khảo

Cameron, 2005, How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?, J. Phys. Chem. B, 109, 7392, 10.1021/jp0407270 Sreethawong, 2005, Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 86, 269, 10.1016/j.solmat.2004.06.010 Cameron, 2003, Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells, J. Phys. Chem. B, 107, 14394, 10.1021/jp030790+ Cameron, 2005, How important is the back reaction via the substrate in dye-sensitized nanocrystalline solar cells?, J. Phys. Chem. B, 109, 930, 10.1021/jp0405759 Salvador, 2005, Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells, J. Phys. Chem. B, 109, 15915, 10.1021/jp051515l Ruhle, 2005, Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients, J. Phys. Chem. B, 109, 9522, 10.1021/jp046211y Zumeta, 2004, Two-layer TiO2 nanostructured photoelectrode with underlying film obtained by microwave-activated chemical bath deposition (MW-CBD), Semicond. Sci. Technol., 19, L52, 10.1088/0268-1242/19/5/L03 Kron, 2003, Influence of the built-in voltage on the fill factor of dye-sensitized solar cells, J. Phys. Chem. B, 107, 13258, 10.1021/jp036039i Rühle, 2004, Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance, J. Phys. Chem. B., 108, 17946, 10.1021/jp047686s Snaith, 2006, The role of a “Schottky barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells, Adv. Mater., 1910, 10.1002/adma.200502256 Vigil, 2004, The role of conducting-oxide substrate type and morphology in TiO2 films grown by microwave chemical bath deposition (MW-CBD) and their photovoltaic characteristics, J. Cryst. Growth, 262, 366, 10.1016/j.jcrysgro.2003.10.046 Penny, 2004, Modelling interfacial charge transfer in dye-sensitised solar cells, J. Photochem. Photobiol. A: Chem., 164, 41, 10.1016/j.jphotochem.2003.12.025 Södergen, 1994, Theoretical model for action spectrum and the current–voltage characteristics of microporous semiconductor films in photoelectrochemical cells, J. Phys. Chem., 98, 5552, 10.1021/j100072a023 Cao, 1996, Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells, J. Phys. Chem., 100, 17021, 10.1021/jp9616573 van der Zanden, 2000, The nature of electron migration in dye-sensitized nanostructured TiO2, J. Phys. Chem. B, 104, 7171, 10.1021/jp001016e Fisher, 2000, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 104, 949, 10.1021/jp993220b Nakade, 2004, Laser-induced photovoltage transient studies on nanoporous TiO2 electrodes, J. Phys. Chem. B, 108, 1628, 10.1021/jp036786f Kambili, 2002, Electron transport in the dye sensitized nanocrystalline cell, Physica E, 14, 203, 10.1016/S1386-9477(02)00384-3 Cass, 2003, Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells, J. Phys. Chem. B, 107, 113, 10.1021/jp026798l Hart, 2004, Formation of anatase TiO2 by microwave processing, Sol. Energy Mater. Sol. Cells, 84, 135, 10.1016/j.solmat.2004.02.041 Hart, 2007, A comparison of microwave and conventional heat treatments of nanocrystalline TiO2, Sol. Energy Mater. Sol. Cells, 91, 6, 10.1016/j.solmat.2006.06.059 Smestad, 1998, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, J. Chem. Educ., 75, 752, 10.1021/ed075p752 Nazeeruddin, 1993, Conversion of light to electricity by cis-XzBis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 115, 6382, 10.1021/ja00067a063 Zumeta, 2003, Comparative study of nanocrystalline TiO2 photoelectrodes based on characteristics of nanopowder used, Sol. Energy Mater. Sol. Cells, 76, 15, 10.1016/S0927-0248(02)00247-7 Kron, 2003, Electronic transport in dye-sensitized nanoporous TiO2 solar cells–comparison of electrolyte and solid-state devices, J. Phys. Chem. B, 107, 3556, 10.1021/jp0222144 Kubo, 2003, Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes, J. Phys. Chem. B, 107, 4374, 10.1021/jp034248x van de Lagemaat, 2000, Effect of the surface-state distribution on electron transport in dye-sensitized TiO2 solar cells: nonlinear electron-transport kinetics, J. Phys. Chem. B, 104, 4292, 10.1021/jp000836o Jiménez-González, 2007, Structural and optoelectronic characterization of TiO2 films prepared using the sol–gel technique, Semicond. Sci. Technol., 22, 709, 10.1088/0268-1242/22/7/006