TiO2 films obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact
Tài liệu tham khảo
Cameron, 2005, How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?, J. Phys. Chem. B, 109, 7392, 10.1021/jp0407270
Sreethawong, 2005, Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 86, 269, 10.1016/j.solmat.2004.06.010
Cameron, 2003, Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells, J. Phys. Chem. B, 107, 14394, 10.1021/jp030790+
Cameron, 2005, How important is the back reaction via the substrate in dye-sensitized nanocrystalline solar cells?, J. Phys. Chem. B, 109, 930, 10.1021/jp0405759
Salvador, 2005, Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells, J. Phys. Chem. B, 109, 15915, 10.1021/jp051515l
Ruhle, 2005, Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients, J. Phys. Chem. B, 109, 9522, 10.1021/jp046211y
Zumeta, 2004, Two-layer TiO2 nanostructured photoelectrode with underlying film obtained by microwave-activated chemical bath deposition (MW-CBD), Semicond. Sci. Technol., 19, L52, 10.1088/0268-1242/19/5/L03
Kron, 2003, Influence of the built-in voltage on the fill factor of dye-sensitized solar cells, J. Phys. Chem. B, 107, 13258, 10.1021/jp036039i
Rühle, 2004, Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance, J. Phys. Chem. B., 108, 17946, 10.1021/jp047686s
Snaith, 2006, The role of a “Schottky barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells, Adv. Mater., 1910, 10.1002/adma.200502256
Vigil, 2004, The role of conducting-oxide substrate type and morphology in TiO2 films grown by microwave chemical bath deposition (MW-CBD) and their photovoltaic characteristics, J. Cryst. Growth, 262, 366, 10.1016/j.jcrysgro.2003.10.046
Penny, 2004, Modelling interfacial charge transfer in dye-sensitised solar cells, J. Photochem. Photobiol. A: Chem., 164, 41, 10.1016/j.jphotochem.2003.12.025
Södergen, 1994, Theoretical model for action spectrum and the current–voltage characteristics of microporous semiconductor films in photoelectrochemical cells, J. Phys. Chem., 98, 5552, 10.1021/j100072a023
Cao, 1996, Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells, J. Phys. Chem., 100, 17021, 10.1021/jp9616573
van der Zanden, 2000, The nature of electron migration in dye-sensitized nanostructured TiO2, J. Phys. Chem. B, 104, 7171, 10.1021/jp001016e
Fisher, 2000, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 104, 949, 10.1021/jp993220b
Nakade, 2004, Laser-induced photovoltage transient studies on nanoporous TiO2 electrodes, J. Phys. Chem. B, 108, 1628, 10.1021/jp036786f
Kambili, 2002, Electron transport in the dye sensitized nanocrystalline cell, Physica E, 14, 203, 10.1016/S1386-9477(02)00384-3
Cass, 2003, Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells, J. Phys. Chem. B, 107, 113, 10.1021/jp026798l
Hart, 2004, Formation of anatase TiO2 by microwave processing, Sol. Energy Mater. Sol. Cells, 84, 135, 10.1016/j.solmat.2004.02.041
Hart, 2007, A comparison of microwave and conventional heat treatments of nanocrystalline TiO2, Sol. Energy Mater. Sol. Cells, 91, 6, 10.1016/j.solmat.2006.06.059
Smestad, 1998, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, J. Chem. Educ., 75, 752, 10.1021/ed075p752
Nazeeruddin, 1993, Conversion of light to electricity by cis-XzBis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 115, 6382, 10.1021/ja00067a063
Zumeta, 2003, Comparative study of nanocrystalline TiO2 photoelectrodes based on characteristics of nanopowder used, Sol. Energy Mater. Sol. Cells, 76, 15, 10.1016/S0927-0248(02)00247-7
Kron, 2003, Electronic transport in dye-sensitized nanoporous TiO2 solar cells–comparison of electrolyte and solid-state devices, J. Phys. Chem. B, 107, 3556, 10.1021/jp0222144
Kubo, 2003, Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes, J. Phys. Chem. B, 107, 4374, 10.1021/jp034248x
van de Lagemaat, 2000, Effect of the surface-state distribution on electron transport in dye-sensitized TiO2 solar cells: nonlinear electron-transport kinetics, J. Phys. Chem. B, 104, 4292, 10.1021/jp000836o
Jiménez-González, 2007, Structural and optoelectronic characterization of TiO2 films prepared using the sol–gel technique, Semicond. Sci. Technol., 22, 709, 10.1088/0268-1242/22/7/006