TiO2 Photocatalytic Degradation of Methylene Blue Using Simple Spray Method

IOP Conference Series: Materials Science and Engineering - Tập 599 Số 1 - Trang 012026 - 2019
Fisca Dian Utami1, Dui Yanto Rahman1, D O Margareta1, Handika Dany Rahmayanti1, Rinaldi Munir1, Euis Sustini1, Mikrajuddin Abdullah1
1Department of Physics, Faculty of Mathematical and Natural Sciences, Bandung Institute of Technology, Jalan Ganeca 10 Bandung 40132, Indonesia

Tóm tắt

Abstract The present work focused on the effects of TiO2 in degrading organic wastewater. Technical TiO2 of anatase crystalline phase was used. TiO2 photocatalyst showed a powerful result in destroying organic effluent. Spray coating was conducted to immobilize the TiO2 particles onto the plastic buffer followed with heat-treatment process. As a result, 30 mL of 25 mg L−1 methylene blue (MB) used in the photocatalyst test was sucessfully degraded after 4 hours of irradiation. Repetitive use of the TiO2 films still has a great photodecomposition ability of removing 99% of the organic contaminant after 5 times use.

Từ khóa


Tài liệu tham khảo

Zhu, 2011, Chemical engineering journal, 172, 746, 10.1016/j.cej.2011.06.053

Clarke, 2010, Environ. Sci. Technol., 44, 1116, 10.1021/es902305e

Fujishima, 2000, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1, 10.1016/S1389-5567(00)00002-2

Ameta, 2018, 135

Tayade, 2009, Ind. Eng. Chem. Res., 48, 10262, 10.1021/ie9012437

Chong, 2010, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039

Atout, 2017, Mater. Res. Bull., 95, 578, 10.1016/j.materresbull.2017.08.029

Vaiano, 2015, Chem. Eng. Sci., 137, 152, 10.1016/j.ces.2015.06.023

Esparza, 2010, Appl. Catal. A, 388, 7, 10.1016/j.apcata.2010.07.058

Stathatos, 2012, J. Hazard. Mater., 211, 68, 10.1016/j.jhazmat.2011.11.055

Wang, 2014, Appl. Surface Sci., 290, 125, 10.1016/j.apsusc.2013.11.013

Ortelli, 2013, J. Photoch. Photobio. A, 276, 58, 10.1016/j.jphotochem.2013.11.013

Dong, 2014, Appl. Surf. Sci., 296, 1, 10.1016/j.apsusc.2013.12.128

Vereb, 2014, React. Kinet. Mech. Catal., 113, 293, 10.1007/s11144-014-0734-y

Barrocas, 2016, Appl. Surf. Sci., 360, 798, 10.1016/j.apsusc.2015.11.070

Yadini, 2014, J. Catal., 2014, 1, 10.1155/2014/413693

Jansson, 2016, Appl. Catal. A Gen., 521, 208, 10.1016/j.apcata.2015.12.015

Lee, 2017, Chemosphere, 166, 118, 10.1016/j.chemosphere.2016.09.082

Ray, 2016, Mater. Today Proc., 3, 1582, 10.1016/j.matpr.2016.04.046

Aliah, 2012, Am. J. Environ. Sci., 8, 280, 10.3844/ajessp.2012.280.290

Utami, 2019, J Phys. Conf. Ser., 1171, 10.1088/1742-6596/1171/1/012030

Utami, 2019, J Phys. Conf. Ser., 1204, 10.1088/1742-6596/1204/1/012086

Margaretta, 2019, J Phys. Conf. Ser., 1204, 10.1088/1742-6596/1204/1/012051

Aarthi, 2007, Journal of Hazardous Materials, 149, 725, 10.1016/j.jhazmat.2007.04.038

Tseng, 2017, Nanomaterials, 7, 133, 10.3390/nano7060133

Slimen, 2011, J. Photochem. Photobiol. A Chem., 221, 13, 10.1016/j.jphotochem.2011.04.013

Wang, 2010, Superlattices Microstruct., 48, 170, 10.1016/j.spmi.2010.06.009

Thao, 2017, Materials, 10, 122, 10.3390/ma10020122

Wong, 2003, Chemosphere, 50, 981, 10.1016/S0045-6535(02)00640-9

Rajeswari, 2009, Iran J. Environ. Health. Sci. Eng., 6, 61

Zangeneh, 2015, J. Ind. Eng. Chem., 26, 1, 10.1016/j.jiec.2014.10.043