Thyroid wars: the rise of central actions

Trends in Endocrinology & Metabolism - Tập 32 - Trang 659-671 - 2021
Valentina Capelli1,2, Carlos Diéguez3,2, Jens Mittag4, Miguel López3,2
1Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
2CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
3Department of Physiology, CIMUS, University of Santiago de Compostela–Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
4University of Lübeck, Institute for Endocrinology and Diabetes, Center of Brain Behavior and Metabolism (CBBM), Lübeck, Germany

Tài liệu tham khảo

Lindholm, 2011, Hypothyroidism and thyroid substitution: historical aspects, J. Thyroid. Res., 2011, 10.4061/2011/809341 Jonklaas, 2014, Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on thyroid hormone replacement, Thyroid, 24, 1670, 10.1089/thy.2014.0028 Ross, 2016, 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis, Thyroid, 26, 1343, 10.1089/thy.2016.0229 Nedergaard, 1997, The interaction between thyroid and brown-fat thermogenesis. Central or peripheral effects?, Ann. N. Y. Acad. Sci., 813, 712, 10.1111/j.1749-6632.1997.tb51772.x Silva, 2001, The multiple contributions of thyroid hormone to heat production, J. Clin. Invest., 108, 35, 10.1172/JCI200113397 Fliers, 2010, Novel neural pathways for metabolic effects of thyroid hormone, Trends Endocrinol. Metab., 21, 230, 10.1016/j.tem.2009.11.008 Lopez, 2013, Energy balance regulation by thyroid hormones at central level, Trends Mol. Med., 19, 418, 10.1016/j.molmed.2013.04.004 Mullur, 2014, Thyroid hormone regulation of metabolism, Physiol. Rev., 94, 355, 10.1152/physrev.00030.2013 Sentis, 2021, Thyroid hormones in the regulation of brown adipose tissue thermogenesis, Endocr. Connect., 10, R106, 10.1530/EC-20-0562 Silva, 2003, The thermogenic effect of thyroid hormone and its clinical implications, Ann. Intern. Med., 139, 205, 10.7326/0003-4819-139-3-200308050-00010 Kim, 2008, Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate, Thyroid, 18, 141, 10.1089/thy.2007.0266 Warner, 2012, Thyroid hormone and the central control of homeostasis, J. Mol. Endocrinol., 49, R29, 10.1530/JME-12-0068 Salvatore, 2014, Thyroid hormones and skeletal muscle – new insights and potential implications, Nat. Rev. Endocrinol., 10, 206, 10.1038/nrendo.2013.238 Vaitkus, 2015, Thyroid hormone mediated modulation of energy expenditure, Int. J. Mol. Sci., 16, 16158, 10.3390/ijms160716158 Cannon, 2010, Thyroid hormones: igniting brown fat via the brain, Nat. Med., 16, 965, 10.1038/nm0910-965 Lopez, 2010, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance, Nat. Med., 16, 1001, 10.1038/nm.2207 Mittag, 2013, Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions, J. Clin. Invest., 123, 509, 10.1172/JCI65252 Martinez-Sanchez, 2017, Hypothalamic AMPK–ER stress–JNK1 axis mediates the central actions of thyroid hormones on energy balance, Cell Metab., 26, 212, 10.1016/j.cmet.2017.06.014 Johann, 2019, Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption, Cell Rep., 27, 3385, 10.1016/j.celrep.2019.05.054 Lopez, 2016, Hypothalamic AMPK: a canonical regulator of whole-body energy balance, Nat. Rev. Endocrinol., 12, 421, 10.1038/nrendo.2016.67 Fekete, 2014, Central regulation of hypothalamic–pituitary–thyroid axis under physiological and pathophysiological conditions, Endocr. Rev., 35, 159, 10.1210/er.2013-1087 Groeneweg, 2020, Disease characteristics of MCT8 deficiency: an international, retrospective, multicentre cohort study, Lancet Diabetes Endocrinol., 8, 594, 10.1016/S2213-8587(20)30153-4 Groeneweg, 2020, Thyroid hormone transporters, Endocr. Rev., 41, 10.1210/endrev/bnz008 Mendoza, 2017, New insights into thyroid hormone action, Pharmacol. Ther., 173, 135, 10.1016/j.pharmthera.2017.02.012 Bianco, 2014, American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models, Thyroid, 24, 88, 10.1089/thy.2013.0109 Varela, 2012, Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism, J. Pathol., 227, 209, 10.1002/path.3984 Martinez-Sanchez, 2017, Thyroid hormones induce browning of white fat, J. Endocrinol., 232, 351, 10.1530/JOE-16-0425 Mayerl, 2014, Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis, J. Clin. Invest., 124, 1987, 10.1172/JCI70324 Herrmann, 2020, Central hypothyroidism impairs heart rate stability and prevents thyroid hormone-induced cardiac hypertrophy and pyrexia, Thyroid, 30, 1205, 10.1089/thy.2019.0705 Cannon, 2020, Human brown adipose tissue: classical brown rather than brite/beige?, Exp. Physiol., 105, 1191, 10.1113/EP087875 Hoefig, 2016, Thermoregulatory and cardiovascular consequences of a transient thyrotoxicosis and recovery in male mice, Endocrinology, 157, 2957, 10.1210/en.2016-1095 Dittner, 2019, At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1, Mol. Metab., 25, 20, 10.1016/j.molmet.2019.05.005 Kaspari, 2020, The paradoxical lean phenotype of hypothyroid mice is marked by increased adaptive thermogenesis in the skeletal muscle, Proc. Natl. Acad. Sci. U. S. A., 117, 22544, 10.1073/pnas.2008919117 Alvarez-Crespo, 2016, Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance, Mol. Metab., 5, 271, 10.1016/j.molmet.2016.01.008 Kong, 2004, Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure, Endocrinology, 145, 5252, 10.1210/en.2004-0545 Cannon, 2004, Brown adipose tissue: function and physiological significance, Physiol. Rev., 84, 277, 10.1152/physrev.00015.2003 Lopez, 2018, AMPK wars: the VMH strikes back, return of the PVH, Trends Endocrinol. Metab., 29, 135, 10.1016/j.tem.2018.01.004 Frare, 2020, Thermoregulation in hibernating mammals: the role of the “thyroid hormones system”, Mol. Cell. Endocrinol., 519 Mittag, 2020, More than fever – novel concepts in the regulation of body temperature by thyroid hormones, Exp. Clin. Endocrinol. Diabetes, 128, 428, 10.1055/a-1014-2510 Warner, 2014, Brown fat and vascular heat dissipation: the new cautionary tail, Adipocyte, 3, 221, 10.4161/adip.28815 Nedergaard, 2007, Unexpected evidence for active brown adipose tissue in adult humans, Am. J. Physiol. Endocrinol. Metab., 293, E444, 10.1152/ajpendo.00691.2006 Larson, 2019, Translational pharmacology and physiology of brown adipose tissue in human disease and treatment, Handb. Exp. Pharmacol., 251, 381, 10.1007/164_2018_184 Lahesmaa, 2014, Hyperthyroidism increases brown fat metabolism in humans, J. Clin. Endocrinol. Metab., 99, E28, 10.1210/jc.2013-2312 Gavrila, 2017, Variable cold-induced brown adipose tissue response to thyroid hormone status, Thyroid, 27, 1, 10.1089/thy.2015.0646 Sun, 2020, A feedforward loop within the thyroid–brown fat axis facilitates thermoregulation, Sci. Rep., 10, 9661, 10.1038/s41598-020-66697-0 Lebon, 2001, Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle, J. Clin. Invest., 108, 733, 10.1172/JCI200111775 Mitchell, 2010, Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia, J. Clin. Invest., 120, 1345, 10.1172/JCI38793 Lin, 2015, Pharmacological activation of thyroid hormone receptors elicits a functional conversion of white to brown fat, Cell Rep., 13, 1528, 10.1016/j.celrep.2015.10.022 Weiner, 2016, Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice, Sci. Rep., 6, 38124, 10.1038/srep38124 Louzada, 2018, Similarities and differences in the peripheral actions of thyroid hormones and their metabolites, Front. Endocrinol. (Lausanne), 9, 394, 10.3389/fendo.2018.00394 Müller, 2018, Anti-obesity therapy: from rainbow pills to polyagonists, Pharmacol. Rev., 70, 712, 10.1124/pr.117.014803 Finan, 2016, Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease, Cell, 167, 843, 10.1016/j.cell.2016.09.014 Milbank, 2016, Extracellular vesicles: pharmacological modulators of the peripheral and central signals governing obesity, Pharmacol. Ther., 157, 65, 10.1016/j.pharmthera.2015.11.002 Seoane-Collazo, 2015, Hypothalamic–autonomic control of energy homeostasis, Endocrine, 50, 276, 10.1007/s12020-015-0658-y Choi, 2013, Revisiting the ventral medial nucleus of the hypothalamus: the roles of SF-1 neurons in energy homeostasis, Front. Neurosci., 7, 71, 10.3389/fnins.2013.00071 Hirschberg, 2020, Ventromedial hypothalamus glucose-inhibited neurones: a role in glucose and energy homeostasis?, J. Neuroendocrinol., 32, 10.1111/jne.12773 Wejaphikul, 2019, Insight into molecular determinants of T3 vs T4 recognition from mutations in thyroid hormone receptor alpha and beta, J. Clin. Endocrinol. Metab., 104, 3491, 10.1210/jc.2018-02794 Forrest, 2000, Functions of thyroid hormone receptors in mice, Thyroid, 10, 41, 10.1089/thy.2000.10.41 Flamant, 2017, Thyroid hormone signaling pathways: time for a more precise nomenclature, Endocrinology, 158, 2052, 10.1210/en.2017-00250 Flamant, 2013, Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response, Biochim. Biophys. Acta, 1830, 3900, 10.1016/j.bbagen.2012.06.003 Gonzalez, 2020, AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control, Cell Metab., 31, 472, 10.1016/j.cmet.2020.01.015 Steinberg, 2019, AMP-activated protein kinase: the current landscape for drug development, Nat. Rev. Drug Discov., 18, 527, 10.1038/s41573-019-0019-2 Ribeiro, 2010, Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis, Endocrinology, 151, 432, 10.1210/en.2009-0667 Christoffolete, 2004, Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis, Diabetes, 53, 577, 10.2337/diabetes.53.3.577 Yau, 2019, Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and mTOR-mediated mitophagy, Autophagy, 15, 131, 10.1080/15548627.2018.1511263 Sjögren, 2007, Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1, EMBO J., 26, 4535, 10.1038/sj.emboj.7601882