Thyroid wars: the rise of central actions
Tài liệu tham khảo
Lindholm, 2011, Hypothyroidism and thyroid substitution: historical aspects, J. Thyroid. Res., 2011, 10.4061/2011/809341
Jonklaas, 2014, Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on thyroid hormone replacement, Thyroid, 24, 1670, 10.1089/thy.2014.0028
Ross, 2016, 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis, Thyroid, 26, 1343, 10.1089/thy.2016.0229
Nedergaard, 1997, The interaction between thyroid and brown-fat thermogenesis. Central or peripheral effects?, Ann. N. Y. Acad. Sci., 813, 712, 10.1111/j.1749-6632.1997.tb51772.x
Silva, 2001, The multiple contributions of thyroid hormone to heat production, J. Clin. Invest., 108, 35, 10.1172/JCI200113397
Fliers, 2010, Novel neural pathways for metabolic effects of thyroid hormone, Trends Endocrinol. Metab., 21, 230, 10.1016/j.tem.2009.11.008
Lopez, 2013, Energy balance regulation by thyroid hormones at central level, Trends Mol. Med., 19, 418, 10.1016/j.molmed.2013.04.004
Mullur, 2014, Thyroid hormone regulation of metabolism, Physiol. Rev., 94, 355, 10.1152/physrev.00030.2013
Sentis, 2021, Thyroid hormones in the regulation of brown adipose tissue thermogenesis, Endocr. Connect., 10, R106, 10.1530/EC-20-0562
Silva, 2003, The thermogenic effect of thyroid hormone and its clinical implications, Ann. Intern. Med., 139, 205, 10.7326/0003-4819-139-3-200308050-00010
Kim, 2008, Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate, Thyroid, 18, 141, 10.1089/thy.2007.0266
Warner, 2012, Thyroid hormone and the central control of homeostasis, J. Mol. Endocrinol., 49, R29, 10.1530/JME-12-0068
Salvatore, 2014, Thyroid hormones and skeletal muscle – new insights and potential implications, Nat. Rev. Endocrinol., 10, 206, 10.1038/nrendo.2013.238
Vaitkus, 2015, Thyroid hormone mediated modulation of energy expenditure, Int. J. Mol. Sci., 16, 16158, 10.3390/ijms160716158
Cannon, 2010, Thyroid hormones: igniting brown fat via the brain, Nat. Med., 16, 965, 10.1038/nm0910-965
Lopez, 2010, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance, Nat. Med., 16, 1001, 10.1038/nm.2207
Mittag, 2013, Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions, J. Clin. Invest., 123, 509, 10.1172/JCI65252
Martinez-Sanchez, 2017, Hypothalamic AMPK–ER stress–JNK1 axis mediates the central actions of thyroid hormones on energy balance, Cell Metab., 26, 212, 10.1016/j.cmet.2017.06.014
Johann, 2019, Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption, Cell Rep., 27, 3385, 10.1016/j.celrep.2019.05.054
Lopez, 2016, Hypothalamic AMPK: a canonical regulator of whole-body energy balance, Nat. Rev. Endocrinol., 12, 421, 10.1038/nrendo.2016.67
Fekete, 2014, Central regulation of hypothalamic–pituitary–thyroid axis under physiological and pathophysiological conditions, Endocr. Rev., 35, 159, 10.1210/er.2013-1087
Groeneweg, 2020, Disease characteristics of MCT8 deficiency: an international, retrospective, multicentre cohort study, Lancet Diabetes Endocrinol., 8, 594, 10.1016/S2213-8587(20)30153-4
Groeneweg, 2020, Thyroid hormone transporters, Endocr. Rev., 41, 10.1210/endrev/bnz008
Mendoza, 2017, New insights into thyroid hormone action, Pharmacol. Ther., 173, 135, 10.1016/j.pharmthera.2017.02.012
Bianco, 2014, American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models, Thyroid, 24, 88, 10.1089/thy.2013.0109
Varela, 2012, Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism, J. Pathol., 227, 209, 10.1002/path.3984
Martinez-Sanchez, 2017, Thyroid hormones induce browning of white fat, J. Endocrinol., 232, 351, 10.1530/JOE-16-0425
Mayerl, 2014, Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis, J. Clin. Invest., 124, 1987, 10.1172/JCI70324
Herrmann, 2020, Central hypothyroidism impairs heart rate stability and prevents thyroid hormone-induced cardiac hypertrophy and pyrexia, Thyroid, 30, 1205, 10.1089/thy.2019.0705
Cannon, 2020, Human brown adipose tissue: classical brown rather than brite/beige?, Exp. Physiol., 105, 1191, 10.1113/EP087875
Hoefig, 2016, Thermoregulatory and cardiovascular consequences of a transient thyrotoxicosis and recovery in male mice, Endocrinology, 157, 2957, 10.1210/en.2016-1095
Dittner, 2019, At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1, Mol. Metab., 25, 20, 10.1016/j.molmet.2019.05.005
Kaspari, 2020, The paradoxical lean phenotype of hypothyroid mice is marked by increased adaptive thermogenesis in the skeletal muscle, Proc. Natl. Acad. Sci. U. S. A., 117, 22544, 10.1073/pnas.2008919117
Alvarez-Crespo, 2016, Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance, Mol. Metab., 5, 271, 10.1016/j.molmet.2016.01.008
Kong, 2004, Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure, Endocrinology, 145, 5252, 10.1210/en.2004-0545
Cannon, 2004, Brown adipose tissue: function and physiological significance, Physiol. Rev., 84, 277, 10.1152/physrev.00015.2003
Lopez, 2018, AMPK wars: the VMH strikes back, return of the PVH, Trends Endocrinol. Metab., 29, 135, 10.1016/j.tem.2018.01.004
Frare, 2020, Thermoregulation in hibernating mammals: the role of the “thyroid hormones system”, Mol. Cell. Endocrinol., 519
Mittag, 2020, More than fever – novel concepts in the regulation of body temperature by thyroid hormones, Exp. Clin. Endocrinol. Diabetes, 128, 428, 10.1055/a-1014-2510
Warner, 2014, Brown fat and vascular heat dissipation: the new cautionary tail, Adipocyte, 3, 221, 10.4161/adip.28815
Nedergaard, 2007, Unexpected evidence for active brown adipose tissue in adult humans, Am. J. Physiol. Endocrinol. Metab., 293, E444, 10.1152/ajpendo.00691.2006
Larson, 2019, Translational pharmacology and physiology of brown adipose tissue in human disease and treatment, Handb. Exp. Pharmacol., 251, 381, 10.1007/164_2018_184
Lahesmaa, 2014, Hyperthyroidism increases brown fat metabolism in humans, J. Clin. Endocrinol. Metab., 99, E28, 10.1210/jc.2013-2312
Gavrila, 2017, Variable cold-induced brown adipose tissue response to thyroid hormone status, Thyroid, 27, 1, 10.1089/thy.2015.0646
Sun, 2020, A feedforward loop within the thyroid–brown fat axis facilitates thermoregulation, Sci. Rep., 10, 9661, 10.1038/s41598-020-66697-0
Lebon, 2001, Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle, J. Clin. Invest., 108, 733, 10.1172/JCI200111775
Mitchell, 2010, Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia, J. Clin. Invest., 120, 1345, 10.1172/JCI38793
Lin, 2015, Pharmacological activation of thyroid hormone receptors elicits a functional conversion of white to brown fat, Cell Rep., 13, 1528, 10.1016/j.celrep.2015.10.022
Weiner, 2016, Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice, Sci. Rep., 6, 38124, 10.1038/srep38124
Louzada, 2018, Similarities and differences in the peripheral actions of thyroid hormones and their metabolites, Front. Endocrinol. (Lausanne), 9, 394, 10.3389/fendo.2018.00394
Müller, 2018, Anti-obesity therapy: from rainbow pills to polyagonists, Pharmacol. Rev., 70, 712, 10.1124/pr.117.014803
Finan, 2016, Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease, Cell, 167, 843, 10.1016/j.cell.2016.09.014
Milbank, 2016, Extracellular vesicles: pharmacological modulators of the peripheral and central signals governing obesity, Pharmacol. Ther., 157, 65, 10.1016/j.pharmthera.2015.11.002
Seoane-Collazo, 2015, Hypothalamic–autonomic control of energy homeostasis, Endocrine, 50, 276, 10.1007/s12020-015-0658-y
Choi, 2013, Revisiting the ventral medial nucleus of the hypothalamus: the roles of SF-1 neurons in energy homeostasis, Front. Neurosci., 7, 71, 10.3389/fnins.2013.00071
Hirschberg, 2020, Ventromedial hypothalamus glucose-inhibited neurones: a role in glucose and energy homeostasis?, J. Neuroendocrinol., 32, 10.1111/jne.12773
Wejaphikul, 2019, Insight into molecular determinants of T3 vs T4 recognition from mutations in thyroid hormone receptor alpha and beta, J. Clin. Endocrinol. Metab., 104, 3491, 10.1210/jc.2018-02794
Forrest, 2000, Functions of thyroid hormone receptors in mice, Thyroid, 10, 41, 10.1089/thy.2000.10.41
Flamant, 2017, Thyroid hormone signaling pathways: time for a more precise nomenclature, Endocrinology, 158, 2052, 10.1210/en.2017-00250
Flamant, 2013, Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response, Biochim. Biophys. Acta, 1830, 3900, 10.1016/j.bbagen.2012.06.003
Gonzalez, 2020, AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control, Cell Metab., 31, 472, 10.1016/j.cmet.2020.01.015
Steinberg, 2019, AMP-activated protein kinase: the current landscape for drug development, Nat. Rev. Drug Discov., 18, 527, 10.1038/s41573-019-0019-2
Ribeiro, 2010, Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis, Endocrinology, 151, 432, 10.1210/en.2009-0667
Christoffolete, 2004, Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis, Diabetes, 53, 577, 10.2337/diabetes.53.3.577
Yau, 2019, Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and mTOR-mediated mitophagy, Autophagy, 15, 131, 10.1080/15548627.2018.1511263
Sjögren, 2007, Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1, EMBO J., 26, 4535, 10.1038/sj.emboj.7601882