Rối loạn chức năng tuyến giáp sau khi tiêm vắc xin COVID-19: một đánh giá cơ bản về các bằng chứng sơ bộ

Journal of Endocrinological Investigation - Tập 45 - Trang 1835-1863 - 2022
A. Jafarzadeh1,2,3, M. Nemati4,5, S. Jafarzadeh6, P. Nozari1, S. M. J. Mortazavi7
1Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
2Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
3Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
4Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
5Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
6Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
7Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran

Tóm tắt

Độ an toàn và hiệu quả của một số loại vắc xin COVID-19, bao gồm vắc xin dựa trên mRNA, vắc xin vector virus và vắc xin bất hoạt, đã được Tổ chức Y tế Thế giới (WHO) phê duyệt. Các vắc xin này có thể cung cấp khả năng bảo vệ chống lại nhiễm SARS-CoV-2 nghiêm trọng thông qua việc kích thích sản sinh kháng thể trung hòa chống protein gai. Tuy nhiên, các vắc xin SARS-CoV-2 đã được liên kết với những biến chứng rất hiếm gặp, chẳng hạn như rối loạn tuyến giáp. Bài tổng quan này được thực hiện nhằm làm nổi bật các đặc điểm chính của những bất thường tuyến giáp sau khi tiêm chủng COVID-19. Một tìm kiếm toàn diện trong các cơ sở dữ liệu điện tử đã được tiến hành để thu thập báo cáo về các rối loạn tuyến giáp sau khi tiêm vắc xin COVID-19. Trong số 83 trường hợp được báo cáo trong bài tổng quan này, hầu hết các trường hợp bất thường tuyến giáp được quan sát sau khi tiêm vắc xin dựa trên mRNA (68,7%), tiếp theo là vắc xin vector virus (15,7%) và 14,5% trường hợp sau khi tiêm vắc xin bất hoạt. Viêm tuyến giáp bán cấp (SAT) là bệnh lý tuyến giáp liên quan đến tiêm vắc xin COVID-19 phổ biến nhất, chiếm 60,2% tổng số trường hợp, tiếp theo là bệnh Graves (GD) với 25,3%. Hơn nữa, một số trường hợp viêm tuyến giáp đau khu vực (3,6%), viêm tuyến giáp yên lặng (3,6%), viêm tuyến giáp đồng thời GD và SAT (2,4%), bệnh mắt tuyến giáp (1,2%), suy giáp rõ rệt (1,2%), viêm tuyến giáp bán cấp không điển hình (1,2%) và viêm tuyến giáp không đau kèm theo TPP (1,2%) cũng đã được báo cáo. Tổng thể, trong 58,0% trường hợp SAT và 61,9% trường hợp GD, sự khởi phát của triệu chứng xảy ra sau liều vắc xin đầu tiên với thời gian trung vị là 10,0 ngày (khoảng: 3–21 ngày) và 10,0 ngày (khoảng: 1–60 ngày) sau khi tiêm, tương ứng. Hơn nữa, 40,0% bệnh nhân SAT và 38,1% bệnh nhân GD phát triển triệu chứng sau liều thứ hai với thời gian trung vị là 10,5 ngày (khoảng: 0,5–37 ngày) và 14,0 ngày (khoảng: 2–35 ngày) sau khi tiêm, tương ứng. May mắn thay, hầu hết các trường hợp rối loạn chức năng tuyến giáp liên quan đến tiêm chủng COVID-19 đều có kết quả tích cực sau điều trị. Lợi ích của tiêm vắc xin COVID-19 trong việc chấm dứt đại dịch và/hoặc giảm tỷ lệ tử vong có thể vượt xa bất kỳ rủi ro nào do những biến chứng hiếm gặp như rối loạn chức năng tuyến giáp tạm thời.

Từ khóa

#COVID-19 #vắc xin #rối loạn tuyến giáp #viêm tuyến giáp bán cấp #bệnh Graves

Tài liệu tham khảo

World Health Organization (2022) WHO COVID-19 dashboard. https://covid19.who.int/ Shiravi AA, Ardekani A, Sheikhbahaei E, Heshmat-Ghahdarijani K (2021) Cardiovascular complications of SARS-CoV-2 vaccines: an overview. Cardiol Therapy. https://doi.org/10.1007/s40119-021-00248-0 World Health Association. COVID-19 vaccines advice. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice Accessed 18 Dec 2021. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO (2021) SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines 6(1):28–28. https://doi.org/10.1038/s41541-021-00292-w Olivieri B, Betterle C, Zanoni G (2021) Vaccinations and autoimmune diseases. Vaccines 9(8):815. https://doi.org/10.3390/vaccines9080815 Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C et al (2020) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383(27):2603–2615. https://doi.org/10.1056/NEJMoa2034577 Lim HX, Arip M, Yahaya AAA-F, Jazayeri SD, Poppema S, Poh CL (2021) Immunogenicity and safety of SARS-CoV-2 vaccines in clinical trials. Front Biosci 26(11):1286–1304. https://doi.org/10.52586/5024 Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE (2018) Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14(5):301–316. https://doi.org/10.1038/nrendo.2018.18 Jafarzadeh A, Poorgholami M, Izadi N, Nemati M, Rezayati M (2010) Immunological and hematological changes in patients with hyperthyroidism or hypothyroidism. Clin Invest Med 33(5):E271–E279. https://doi.org/10.25011/cim.v33i5.14352 Bargiel P, Szczuko M, Stachowska L, Prowans P, Czapla N, Markowska M, Petriczko J, Kledzik J, Jędrzejczyk-Kledzik A, Palma J et al (2021) Microbiome metabolites and thyroid dysfunction. J Clin Med 10(16):3609. https://doi.org/10.3390/jcm10163609 Aemaz Ur Rehman M, Farooq H, Ali MM, Ebaad Ur Rehman M, Dar QA, Hussain A (2021) The association of subacute thyroiditis with COVID-19: a systematic review. SN Compr Clin Med. https://doi.org/10.1007/s42399-021-00912-5 Stasiak M, Lewiński A (2021) New aspects in the pathogenesis and management of subacute thyroiditis. Rev Endocr Metab Disord 22(4):1027–1039. https://doi.org/10.1007/s11154-021-09648-y Ohsako N, Tamai H, Sudo T, Mukuta T, Tanaka H, Kuma K, Kimura A, Sasazuki T (1995) Clinical characteristics of subacute thyroiditis classified according to human leukocyte antigen typing. J Clin Endocrinol Metab 80(12):3653–3656. https://doi.org/10.1210/jcem.80.12.8530615 Stasiak M, Tymoniuk B, Michalak R, Stasiak B, Kowalski ML, Lewiński A (2020) Subacute thyroiditis is associated with HLA-B*18:01, -DRB1*01 and -C*04:01-the significance of the new molecular background. J Clin Med 9(2):534. https://doi.org/10.3390/jcm9020534 Fatourechi V, Aniszewski JP, Fatourechi GZ, Atkinson EJ, Jacobsen SJ (2003) Clinical features and outcome of subacute thyroiditis in an incidence cohort: Olmsted County, Minnesota, study. J Clin Endocrinol Metab 88(5):2100–2105. https://doi.org/10.1210/jc.2002-021799 Al-Tikrity MA, Magdi M, Abou Samra AB, Elzouki AY (2020) Subacute thyroiditis: an unusual presentation of fever of unknown origin following upper respiratory tract infection. Am J Case Rep 21:e920515. https://doi.org/10.12659/ajcr.920515 Scappaticcio L, Pitoia F, Esposito K, Piccardo A, Trimboli P (2020) Impact of COVID-19 on the thyroid gland: an update. Rev Endocr Metab Disord 22(4):803–815. https://doi.org/10.1007/s11154-020-09615-z Pearce EN, Farwell AP, Braverman LE (2003) Thyroiditis. N Engl J Med 348(26):2646–2655. https://doi.org/10.1056/NEJMra021194 Patel KR, Cunnane ME, Deschler DG (2021) SARS-CoV-2 vaccine-induced subacute thyroiditis. Am J Otolaryngol 43(1):103211. https://doi.org/10.1016/j.amjoto.2021.103211 Görges J, Ulrich J, Keck C, Müller-Wieland D, Diederich S, Janssen OE (2020) Long-term outcome of subacute thyroiditis. Exp Clin Endocrinol Diabetes 128(11):703–708. https://doi.org/10.1055/a-0998-8035 Samuels MH (2012) Subacute, silent, and postpartum thyroiditis. Med Clin North Am 96(2):223–233. https://doi.org/10.1016/j.mcna.2012.01.003 Li JH, Daniels GH, Barbesino G (2021) Painful subacute thyroiditis is commonly misdiagnosed as suspicious thyroid nodular disease. Mayo Clinic Proc Innov Qual Outcomes 5(2):330–337. https://doi.org/10.1016/j.mayocpiqo.2020.12.007 Cappelli C, Pirola I, Gandossi E, Formenti AM, Agosti B, Castellano M (2014) Ultrasound findings of subacute thyroiditis: a single institution retrospective review. Acta Radiol 55(4):429–433. https://doi.org/10.1177/0284185113498721 Vural Ç, Paksoy N, Gök ND, Yazal K (2015) Subacute granulomatous (De Quervain’s) thyroiditis: fine-needle aspiration cytology and ultrasonographic characteristics of 21 cases. Cytojournal 12:9. https://doi.org/10.4103/1742-6413.157479 Bornemann C, Woyk K, Bouter C (2021) Case report: two cases of subacute thyroiditis following SARS-CoV-2 vaccination. Front Med 8:737142. https://doi.org/10.3389/fmed.2021.737142 Plaza-Enriquez L, Khatiwada P, Sanchez-Valenzuela M, Sikha A (2021) A case report of subacute thyroiditis following mRNA COVID-19 vaccine. Case Rep Endocrinol 2021:8952048. https://doi.org/10.1155/2021/8952048 Siolos A, Gartzonika K, Tigas S (2021) Thyroiditis following vaccination against COVID-19: report of two cases and review of the literature. Metabol Open 12:100136. https://doi.org/10.1016/j.metop.2021.100136 Pujol A, Gómez LA, Gallegos C, Nicolau J, Sanchís P, González-Freire M, López-González ÁA, Dotres K, Masmiquel L (2021) Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: from Graves’ disease to silent thyroiditis. J Endocrinol Invest. https://doi.org/10.1007/s40618-021-01707-0 Chatzi S, Karampela A, Spiliopoulou C, Boutzios G (2021) Subacute thyroiditis after SARS-CoV-2 vaccination: a report of two sisters and summary of the literature. Hormones 21(1):177–179. https://doi.org/10.1007/s42000-021-00332-z Şahin Tekin M, Şaylısoy S, Yorulmaz G (2021) Subacute thyroiditis following COVID-19 vaccination in a 67-year-old male patient: a case report. Hum Vaccin Immunother 17(11):4090–4092. https://doi.org/10.1080/21645515.2021.1947102 Oyibo SO (2021) Subacute thyroiditis after receiving the adenovirus-vectored vaccine for coronavirus disease (COVID-19). Cureus 13:e16045. https://doi.org/10.7759/cureus.16045 İremli BG, Şendur SN, Ünlütürk U (2021) Three cases of subacute thyroiditis following SARS-CoV-2 vaccine: postvaccination ASIA Syndrome. J Clin Endocrinol Metab 106(9):2600–2605. https://doi.org/10.1210/clinem/dgab373 Franquemont S, Galvez J (2021) Subacute thyroiditis after mRNA vaccine for Covid-19. J Endocr Soc 5:A956–A957. https://doi.org/10.1210/jendso/bvab048.1954 Jeeyavudeen MS, Patrick AW, Gibb FW, Dover AR (2021) COVID-19 vaccine-associated subacute thyroiditis: an unusual suspect for de Quervain’s thyroiditis. BMJ Case Rep 14(11):e246425. https://doi.org/10.1136/bcr-2021-246425 Kyriacou A, Ioakim S, Syed AA (2021) COVID-19 vaccination and a severe pain in the neck. Eur J Intern Med 94:95–96. https://doi.org/10.1016/j.ejim.2021.10.008 Saygılı ES, Karakilic E (2021) Subacute thyroiditis after inactive SARS-CoV-2 vaccine. BMJ Case Reports 14:e244711. https://doi.org/10.1136/bcr-2021-244711 Soltanpoor P, Norouzi G (2021) Subacute thyroiditis following COVID-19 vaccination. Clin Case Rep 9:e04812. https://doi.org/10.1002/ccr3.4812 Schimmel J, Alba EL, Chen A, Russell M, Srinath R (2021) Letter to the editor: thyroiditis and thyrotoxicosis after the SARS-CoV-2 mRNA vaccine. Thyroid 31(9):1440. https://doi.org/10.1089/thy.2021.0184 Ratnayake GM, Dworakowska D, Grossman AB (2021) Can COVID-19 immunisation cause subacute thyroiditis? Clin Endocrinol. https://doi.org/10.1111/cen.14555.10.1111/cen.14555 Lee KA, Kim YJ, Jin HY (2021) Thyrotoxicosis after COVID-19 vaccination: seven case reports and a literature review. Endocrine 74(3):470–472. https://doi.org/10.1007/s12020-021-02898-5 Khan F, Brassill MJ (2021) Subacute thyroiditis post-Pfizer-BioNTech mRNA vaccination for COVID-19. Endocrinol Diabetes Metab Case Rep 2021:21–0142. https://doi.org/10.1530/edm-21-0142 Leber HM, Sant’Ana L, Konichi da Silva NR, Raio MC, Mazzeo T, Endo CM, Nascimento H, de Souza CE (2021) Acute thyroiditis and bilateral optic neuritis following SARS-CoV-2 vaccination with CoronaVac: a case report. Ocul Immunol Inflamm 29(6):1200–1206. https://doi.org/10.1080/09273948.2021.1961815 Sözen M, Topaloğlu Ö, Çetinarslan B, Selek A, Cantürk Z, Gezer E, Köksalan D, Bayraktaroğlu T (2021) COVID-19 mRNA vaccine may trigger subacute thyroiditis. Hum Vaccin Immunother 17(12):5120–5125. https://doi.org/10.1080/21645515.2021.2013083 Pandya M, Thota G, Wang X, Luo H (2021) Thyroiditis after coronavirus disease 2019 (COVID-19) mRNA vaccine: a case series. AACE Clin Case Rep. https://doi.org/10.1016/j.aace.2021.12.002 Pla Peris B, Merchante Alfaro AÁ, Maravall Royo FJ, Abellán Galiana P, Pérez Naranjo S, González Boillos M (2022) Thyrotoxicosis following SARS-COV-2 vaccination: a case series and discussion. J Endocrinol Invest. https://doi.org/10.1007/s40618-022-01739-0 Bostan H, Unsal IO, Kizilgul M, Gul U, Sencar ME, Ucan B, Cakal E (2022) Two cases of subacute thyroiditis after different types of SARS-CoV-2 vaccination. Arch Endocrinol Metab. https://doi.org/10.20945/2359-3997000000430 Jhon M, Lee SH, Oh TH, Kang HC (2022) Subacute thyroiditis after receiving the mRNA COVID-19 vaccine (Moderna): the first case report and literature review in Korea. J Korean Med Sci 37:e39. https://doi.org/10.3346/jkms.2022.37.e39 Vasileiou V, Paschou SA, Tzamali X, Mitropoulou M, Kanouta F, Psaltopoulou T, Kassi GN (2022) Recurring subacute thyroiditis after SARS-CoV-2 mRNA vaccine: A case report. Case Rep Womens Health 33:e00378. https://doi.org/10.1016/j.crwh.2021.e00378 Yorulmaz G, Sahin Tekin M (2022) SARS-CoV-2 vaccıne-assocıated subacute thyroıdıtıs. J Endocrinol Invest. https://doi.org/10.1007/s40618-022-01767-w Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, Eckstein AK, Stagnaro-Green A, Kahaly GJ (2020) Graves’ disease. Nat Rev Dis Primers 6:52. https://doi.org/10.1038/s41572-020-0184-y Antonelli A, Ferrari SM, Ragusa F, Elia G, Paparo SR, Ruffilli I, Patrizio A, Giusti C, Gonnella D, Cristaudo A et al (2020) Graves’ disease: epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab 34(1):101387. https://doi.org/10.1016/j.beem.2020.101387 Fröhlich E, Wahl R (2017) Thyroid autoimmunity: role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Front Immunol 8:521–521. https://doi.org/10.3389/fimmu.2017.00521 Murugan AK, Alzahrani AS (2021) SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves’ disease. Endocrine 73(2):243–254. https://doi.org/10.1007/s12020-021-02770-6 Mehraji Z, Farazmand A, Esteghamati A, Noshad S, Sadr M, Amirzargar S, Yekaninejad MS, Amirzargar A (2017) Association of human leukocyte antigens class I and II with Graves’ Disease in Iranian population. Iran J Immunol 14(3):223–230 Zettinig G, Krebs M (2021) Two further cases of Graves’ disease following SARS-Cov-2 vaccination. J Endocrinol Invest 45(1):227–228. https://doi.org/10.1007/s40618-021-01650-0 Raven LM, McCormack AI, Greenfield JR (2021) Letter to the editor from Raven: three cases of Subacute Thyroiditis following SARS-CoV-2 vaccine. J Clin Endocrinol Metab 106(9):2600–2605. https://doi.org/10.1210/clinem/dgab822 Vera-Lastra O, Ordinola Navarro A, Cruz Domiguez MP, Medina G, Sánchez Valadez TI, Jara LJ (2021) Two cases of Graves’ Disease following SARS-CoV-2 vaccination: an autoimmune/inflammatory syndrome induced by adjuvants. Thyroid 31(9):1436–1439. https://doi.org/10.1089/thy.2021.0142 Lui DTW, Lee KK, Lee CH, Lee ACH, Hung IFN, Tan KCB (2021) Development of Graves’ Disease after SARS-CoV-2 mRNA vaccination: a case report and literature review. Front Public Health 9:778964. https://doi.org/10.3389/fpubh.2021.778964 Weintraub MA, Ameer B, Sinha Gregory N (2021) Graves Disease following the SARS-CoV-2 vaccine: case series. J Investig Med High Impact Case Rep 9:23247096211063356. https://doi.org/10.1177/23247096211063356 Sriphrapradang C, Shantavasinkul PC (2021) Graves’ disease following SARS-CoV-2 vaccination. Endocrine 74(3):473–474. https://doi.org/10.1007/s12020-021-02902-y Patrizio A, Ferrari SM, Antonelli A, Fallahi P (2021) A case of Graves’ disease and type 1 diabetes mellitus following SARS-CoV-2 vaccination. J Autoimmun 125:102738. https://doi.org/10.1016/j.jaut.2021.102738 Pierman G, Delgrange E, Jonas C (2021) Recurrence of Graves’ Disease (a Th1-type Cytokine Disease) following SARS-CoV-2 mRNA vaccine administration: a simple coincidence? Eur J Case Rep Intern Med 8(9):002807–002807. https://doi.org/10.12890/2021_002807 Goblirsch TJ, Paulson AE, Tashko G, Mekonnen AJ (2021) Graves’ disease following administration of second dose of SARS-CoV-2 vaccine. BMJ Case Rep 14(12):e246432. https://doi.org/10.1136/bcr-2021-246432 Sakiyama R (1986) Silent thyroiditis. J Fam Pract 23:367–369 McAlinden C (2014) An overview of thyroid eye disease. Eye Vis 1:9–9. https://doi.org/10.1186/s40662-014-0009-8 Lazarus JH (2012) Epidemiology of Graves’ orbitopathy (GO) and relationship with thyroid disease. Best Pract Res Clin Endocrinol Metab 26(3):273–279. https://doi.org/10.1016/j.beem.2011.10.005 Łacheta D, Miśkiewicz P, Głuszko A, Nowicka G, Struga M, Kantor I, Poślednik KB, Mirza S, Szczepański MJ (2019) Immunological aspects of Graves’ ophthalmopathy. Biomed Res Int 2019:7453260–7453260. https://doi.org/10.1155/2019/7453260 Rubinstein TJ (2021) Thyroid eye disease following COVID-19 vaccine in a patient with a history Graves’ Disease: a case report. Ophthalmic Plast Reconstr Surg 37(6):e221–e223. https://doi.org/10.1097/iop.0000000000002059 Capezzone M, Tosti-Balducci M, Morabito EM, Caldarelli GP, Sagnella A, Cantara S, Alessandri M, Castagna MG (2022) Silent thyroiditis following vaccination against COVID-19: report of two cases. J Endocrinol Invest. https://doi.org/10.1007/s40618-021-01725-y Nakaizumi N, Fukata S, Akamizu T (2022) Painless thyroiditis following mRNA vaccination for COVID-19. Hormones. https://doi.org/10.1007/s42000-021-00346-7 Giusti M, Maio A (2021) Acute thyroid swelling with severe hypothyroid myxoedema after COVID-19 vaccination. Clin Case Rep 9:e05217. https://doi.org/10.1002/ccr3.5217 Hernán Martinez J, Corder E, Uzcategui M, Garcia M, Sostre S, Garcia A (2011) Subacute thyroiditis and dyserythropoesis after influenza vaccination suggesting immune dysregulation. Bol Asoc Med P R 103(2):48–52 Girgis CM, Russo RR, Benson K (2010) Subacute thyroiditis following the H1N1 vaccine. J Endocrinol Invest 33(7):506. https://doi.org/10.1007/bf03346633 Altay FA, Güz G, Altay M (2016) Subacute thyroiditis following seasonal influenza vaccination. Hum Vaccin Immunother 12(4):1033–1034. https://doi.org/10.1080/21645515.2015.1117716 Passah A, Arora S, Damle NA, Reddy KS, Khandelwal D, Aggarwal S (2018) Occurrence of Subacute Thyroiditis following influenza vaccination. Indian J Endocrinol Metab 22(5):713–714. https://doi.org/10.4103/ijem.IJEM_237_18 Pellegrino P, Perrone V, Pozzi M, Carnovale C, Perrotta C, Clementi E, Radice S (2015) The epidemiological profile of ASIA syndrome after HPV vaccination: an evaluation based on the Vaccine Adverse Event Reporting Systems. Immunol Res 61(1–2):90–96. https://doi.org/10.1007/s12026-014-8567-3 Xie Q, Mu XY, Li SQ (2021) Subacute thyroiditis following HPV vaccination: a case report. Sichuan Da Xue Xue Bao Yi Xue Ban 52(6):1047–1048. https://doi.org/10.12182/20211160506 Toft J, Larsen S, Toft H (1998) Subacute thyroiditis after hepatitis B vaccination. Endocr J 45(1):135 Bragazzi NL, Hejly A, Watad A, Adawi M, Amital H, Shoenfeld Y (2020) ASIA syndrome and endocrine autoimmune disorders. Best Pract Res Clin Endocrinol Metab 34(1):101412. https://doi.org/10.1016/j.beem.2020.101412 Murugan AK, Alzahrani AS (2021) SARS-CoV-2: emerging role in the pathogenesis of various thyroid diseases. J Inflamm Res 14:6191–6221. https://doi.org/10.2147/jir.s332705 Giovanella L, Ruggeri RM, Ovčariček PP, Campenni A, Treglia G, Deandreis D (2021) Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clin Transl Imaging. https://doi.org/10.1007/s40336-021-00419-y Vojdani A, Vojdani E, Kharrazian D (2020) Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front Immunol 11:617089. https://doi.org/10.3389/fimmu.2020.617089 Vojdani A, Kharrazian D (2020) Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol 217:108480. https://doi.org/10.1016/j.clim.2020.108480 Jadali Z (2020) COVID- 19 and thyroid infection: learning the lessons of the past. Acta Endocrinol 16(3):375–376. https://doi.org/10.4183/aeb.2020.375 Gross DM, Forsthuber T, Tary-Lehmann M, Etling C, Ito K, Nagy ZA, Field JA, Steere AC, Huber BT (1998) Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 281(5377):703–706. https://doi.org/10.1126/science.281.5377.703 Vadalà M, Poddighe D, Laurino C, Palmieri B (2017) Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J 8(3):295–311. https://doi.org/10.1007/s13167-017-0101-y Chen RT, Pless R, Destefano F (2001) Epidemiology of autoimmune reactions induced by vaccination. J Autoimmun 16(3):309–318. https://doi.org/10.1006/jaut.2000.0491 Yazdanpanah N, Rezaei N (2022) Autoimmune complications of COVID-19. J Med Virol 94(1):54–62. https://doi.org/10.1002/jmv.27292 Safdari V, Alijani E, Nemati M, Jafarzadeh A (2017) Imbalances in T cell-related transcription factors among patients with Hashimoto’s Thyroiditis. Sultan Qaboos Univ Med J 17(2):e174–e180. https://doi.org/10.18295/squmj.2016.17.02.007 Janyga S, Marek B, Kajdaniuk D, Ogrodowczyk-Bobik M, Urbanek A, Bułdak Ł (2021) CD4+ cells in autoimmune thyroid disease. Endokrynol Pol 72(5):572–583. https://doi.org/10.5603/EP.a2021.0076 Teijaro JR, Farber DL (2021) COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol 21(4):195–197. https://doi.org/10.1038/s41577-021-00526-x Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M (2020) Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 257:118102. https://doi.org/10.1016/j.lfs.2020.118102 Zhang C, Maruggi G, Shan H, Li J (2019) Advances in mRNA vaccines for infectious diseases. Front Immunol 10:594. https://doi.org/10.3389/fimmu.2019.00594 Singh RP, Bischoff DS (2021) Sex hormones and gender influence the expression of markers of regulatory T cells in SLE patients. Front Immunol 12:619268. https://doi.org/10.3389/fimmu.2021.619268 Tu Y, Fan G, Zeng T, Cai X, Kong W (2018) Association of TNF-α promoter polymorphism and Graves’ disease: an updated systematic review and meta-analysis. Biosci Rep 38:BSR20180143. https://doi.org/10.1042/BSR20180143 Davarpanah E, Jafarzadeh A, Nemati M, Bassagh A, Abasi MH, Khosravimashizi A, Kazemipoor N, Ghazizadeh M, Mirzaee M (2020) Circulating concentration of interleukin-37 in Helicobacter pylori-infected patients with peptic ulcer: Its association with IL-37 related gene polymorphisms and bacterial virulence factor CagA. Cytokine 126:154928. https://doi.org/10.1016/j.cyto.2019.154928 Ritchie H, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, Hasell J, Macdonald B, Beltekian D, Roser M (2020) "Coronavirus Pandemic (COVID-19)". Published online at OurWorldInData.org. 'https://ourworldindata.org/coronavirus'.