Ngưỡng năng lượng động đất và giới hạn khoảng cách l liquefaction trong trận động đất Wenchuan 2008

Bulletin of Earthquake Engineering - Tập 16 - Trang 5151-5170 - 2018
Yan-Guo Zhou1, Kai Liu1, Dao-Sheng Ling1, Tao Shen1, Yun-Min Chen1
1MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, People’s Republic of China

Tóm tắt

Việc ước lượng khu vực có khả năng xảy ra hiện tượng lỏng hóa trong một trận động đất mạnh rất có giá trị cho việc ước tính thiệt hại kinh tế, nỗ lực khảo sát và điều tra hiện trường sau sự kiện. Nghiên cứu này đã xác định và tổng hợp một lượng lớn hồ sơ trường hợp lỏng hóa từ trận động đất Wenchuan năm 2008, Trung Quốc, nhằm điều tra mối quan hệ giữa sự giảm năng lượng sóng địa chấn và giới hạn khoảng cách lỏng hóa trong trận động đất này. Đầu tiên, chúng tôi đã giới thiệu khái niệm tỷ lệ hấp thụ năng lượng, được định nghĩa là năng lượng được hấp thụ của đất chia cho năng lượng tác động của sóng địa chấn tại một địa điểm nhất định, và mối quan hệ giữa tỷ lệ hấp thụ năng lượng và tỷ lệ giảm chấn vật liệu đã được thiết lập dựa trên vòng lặp ứng suất–biến dạng của yếu tố đất và quá trình lan truyền sóng địa chấn từ nguồn đến địa điểm. Thứ hai, năng lượng động đất tác động ngưỡng cần thiết để gây ra lỏng hóa đã được xác định dựa trên các nghiên cứu hiện có về năng lượng hấp thụ cần thiết để kích hoạt hiện tượng lỏng hóa của các loại đất cát và đặc điểm giảm chấn của chuyển động mặt đất trong trận động đất Wenchuan 2008, và giới hạn khoảng cách lỏng hóa được ước lượng dựa vào mối quan hệ giữa độ lớn–năng lượng–khoảng cách. Cuối cùng, cơ sở dữ liệu lỏng hóa thực địa từ 209 địa điểm trong trận động đất Wenchuan 2008 đã được sử dụng để xác nhận sự ước lượng như vậy, và năng lượng động đất tác động ngưỡng quan sát thực địa để gây ra lỏng hóa trong các trận động đất lớn gần đây trên toàn thế giới đã được phân tích hồi cứu để kiểm tra khả năng dự đoán của phương pháp hiện tại, và một số cơ chế khả thi đã được thảo luận để giải thích sự khác biệt giữa quan sát thực địa và dự đoán lý thuyết. Nghiên cứu này cho thấy rằng sự giảm năng lượng động đất và giới hạn khoảng cách lỏng hóa là đặc trưng theo vùng và phụ thuộc vào trận động đất, và 382 J/m3 là mức trung bình của năng lượng động đất tác động ngưỡng để gây ra lỏng hóa cho đất cát bão hòa lỏng lẻo, và giới hạn khoảng cách lỏng hóa tương ứng khoảng 87.4 km tính từ đứt gãy cho sự kiện Mw = 7.9 tại đồng bằng Thành Đô. Mô hình giảm năng lượng khu vực và năng lượng động đất tác động ngưỡng được đề xuất có thể được coi là công cụ gần đúng trong việc đánh giá mối nguy lỏng hóa trong các trận động đất tiềm năng tại khu vực này.

Từ khóa

#lỏng hóa #năng lượng động đất #khoảng cách lỏng hóa #động đất Wenchuan #khảo sát địa chất

Tài liệu tham khảo

Ambraseys NN (1988) Engineering seismology. Earthq Eng Struct Dyn 17:1–105 Aydan Ö, Hamada M, Bardet JP, Ulusay R, Kanibir A (2004) Liquefaction induced lateral spreading in the 1999 Kocaeli earthquake, Turkey: case study around the Hotel Sapanca. In: Proceedings of the 13th world conference on earthquake engineering, Vancouver, BC, Canada, paper no. 2921 (on CD) Baziar MH, Jafarian Y (2007) Assessment of liquefaction triggering using strain energy concept and ANN model: capacity energy. Soil Dyn Earthq Eng 27(12):1056–1072 Berrill JB, Davis RO (1985) Dipation and seismic liquefaction of sands: revised model. Soils Found 25(2):106–118 Bhattacharya S, Hyodo M, Goda K, Tazoh T, Taylor CA (2011) Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dyn Earthq Eng 31(11):1618–1628 Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J Geophys Res Solid Earth 108(B8):2390. https://doi.org/10.1029/2002JB002321 Carcione M (2001) Energy balance and fundamental relations in dynamic anisotropic poro-viscoelasticity. Proc R Soc Lond A Math Phys Eng Sci 457(2006):331–348 Chen LW, Yuan XM, Cao ZZ, Hou LQ, Sun R, Dong L, Wang WM, Meng HC (2009) Liquefaction macrophenomena in the great Wenchuan earthquake. Earthq Eng Eng Vib 8(2):216–229 Chen GX, Jin DD, Mao J, Gao HM, Wang ZH, Jin LP, Li YQ, Li XJ (2014) Seismic damage and behavior analysis of earth dams during the 2008 Wenchuan earthquake, China. Eng Geol 180:99–129 Cubrinovski M, Bray JD, Taylor M, Giorgini S, Bradley B, Wotherspoon L, Zupan J (2011) Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake. Seismol Res Lett 82(6):893–904 Davis RO, Berrill JB (1982) Energy dissipation and seismic liquefaction in sands. Earthq Eng Struct Dyn 19:59–68 Dief HM (2000) Evaluating the liquefaction potential of soils by the energy method in the centrifuge. Ph.D. dissertation, Case Western Reserve University, Cleveland, pp 219 Dobry R, Abdoun T (2015) Cyclic shear strain needed for liquefaction triggering and assessment of overburden pressure factor Kσ. J Geotech Geoenviron Eng ASCE 141(11):04015047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001342 Figueroa JL, Saada AS, Liang L, Dahisaria NM (1994) Evaluation of soil liquefaction by energy principles. J Geotech Eng ASCE 120(9):1554–1569 Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324(3):169–187 Gao YF, Zhang N, Li DY, Liu HL, Cai YQ, Wu YX (2012) Effects of topographic amplification induced by a U-shaped canyon on seismic waves. Bull Seismol Soc Am 102(4):1748–1763 Goto S, Suzuki Y, Nishio S, Oh-oka H (1992) Mechanical properties of undisturbed tone-river gravel obtained by in situ freezing method. Soils Found 32(3):15–25 Green RA (2001) Energy-based evaluation and remediation of liquefiable soils, Ph.D. dissertation, Virginia Polytechnical Institute and State University, pp 397 Green RA, Mitchell JK (2004) Energy-based evaluation and remediation of liquefiable soils. Geotech Eng Transp Proj 2:1961–1970 Green RA, Wood C, Cox B, Cubrinovski M, Wotherspoon L, Bradley B, Algie T, Allen J, Bradshaw A, Rix G (2011) Use of DCP and SASW tests to evaluate liquefaction potential: predictions vs. observations during the recent New Zealand earthquakes. Seismol Res Lett 82(6):927–938 Hamada M, Wakamatsu K (1999) Liquefaction, ground deformation and their related damage to structures. In: Hamada M, Ohmachi T, Ohbo N (eds) The 1995 Hyogoken-Nanbu earthquake-investigation into damage to civil engineering structure. Japan Society of Civil Engineers, Tokyo, pp 45–92 Hamling IJ, D’Anastasio E, Wallace LM, Ellis S, Motagh M, Samsonov S, Palmer N, Hreinsdóttir S (2015) Crustal deformation and stress transfer during a propagating earthquake sequence: the 2013 Cook Strait sequence, central New Zealand. J Geophys Res Solid Earth 119(7):6080–6092 Hancox GT, Cox SC, Turnbull IM, Crozier MJ (2003) Reconnaissance studies of landslides and other ground damage caused by the MW7.2 Fiordland earthquake of 22 August 2003. Institute of Geological and Nuclear Science, Science Report 2003/30, Lower Hutt Hartzell S, Mendoza C, Ramirez-Guzman L, Zeng Y, Mooney W (2013) Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data. Bull Seismol Soc Am 103(1):353–370 Henke R, Henke WK (2002) In situ nonlinear inelastic shearing deformation characteristics of soil deposits inferred using the torsional cylindrical impulse shear test. Bull Seismol Soc Am 92(5):1970–1983 Huang Y, Jiang XM (2010) Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Nat Hazards 54(3):839–850 Huang RQ, Li WL (2009) Development and distribution of geohazards triggered by the 5.12 Wenchuan Earthquake in China. Sci China Ser E Technol Sci 52(4):810–819 Huang Y, Yu M (2013) Review of soil liquefaction characteristics during major earthquakes of the 21st century. Nat Hazards 65(3):2375–2384 Ide S, Takeo M, Yoshida Y (1996) Source process of the 1995 Kobe earthquake: determination of spatio-temporal slip distribution by Bayesian modeling. Bull Seismol Soc Am 86(3):547–566 Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. EERI Publication, Monograph MNO-12, Earthquake Engineering Research Institute, Oakland Ishihara K, Araki K, Toshiyuki K (2014) Liquefaction in Tokyo bay and Kanto regions in the 2011 great east Japan earthquake. Springer, Berlin, pp 93–140. https://doi.org/10.1007/978-3-319-03182-8_4 Izawa J, Ueda K (2016) Evaluation for soil liquefaction due to long duration earthquakes with low acceleration. Jpn Geotech Soc Spec Publ 2(21):788–793 Jafarian Y, Abdollahi AS, Vakili R, Baziar MH, Noorzad A (2011) On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: a numerical study. Comput Geotech 38:800–808 Jafarian Y, Vakili R, Abdollahi AS, Baziar MH (2014) Simplified soil liquefaction assessment based on cumulative kinetic energy density: attenuation law and probabilistic analysis. Int J Geomech 14(2):267–281 Jennings PC (2003) An introduction to the earthquake response of structures. International handbook of earthquake and engineering seismology, part B. Academic Press, Amsterdam, pp 1097–1125 Jing LP, Luo Q, Cui J (2006) Experimental study on liquefaction and strain properties of saturated silt. Earthq Eng Eng Vib 26(5):252–257 Juang CH, Li KD (2007) Assessment of liquefaction hazards in Charleston quadrangle, South Carolina. Eng Geol 92(1–2):59–72 Kaiser A, Holden C, Beavan J, Beetham D, Benites R, Celentano A, Collett D, Cousins J, Cubrinovski M, Dellow G, Denys P, Fielding E, Fry B, Gerstenberger M, Langridge R, Massey C, Motagh M, Pondard N, McVerry G, Ristau J, Stirling M, Thomas J, Uma SR, Zhao J (2012) The Mw 6.2 Christchurch earthquake of February 2011: preliminary report. N Z J Geol Geophys 55(1):67–90 Kanagalingam T (2006) Liquefaction resistance of granular mixes based on contact density and energy considerations. Ph.D. dissertation, The State University of New York, Buffalo, NY, p 386 Kanamori H (1978) Quantification of earthquakes. Nature 271(5644):411–414 Kiyota T, Koseki J, Sato T, Tsutsumi Y (2009) Effects of sample disturbance on small strain characteristics and liquefaction properties of Holocene and Pleistocene sandy soils. Soils Found 49(4):509–523 Kokusho T (2013) Liquefaction potential evaluations: energy-based method versus stress-based method. Can Geotech J 50(10):1088–1099 Kramer SL, Sideras SS, Greenfield MW (2016) The timing of liquefaction and its utility in liquefaction hazard evaluation. Soil Dyn Earthq Eng 91:133–146 Lenz J, Baise LG (2007) Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dyn Earthq Eng 27(7):690–702 Li XJ, Zhou ZH, Huang M, Wen RZ, Yu HY, Lu DW, Zhou YN, Cui JW (2008) Preliminary analysis of strong-motion recordings from the magnitude 8.0 Wenchuan, China, earthquake of 12 May 2008. Seismol Res Lett 79(6):844–854 Li XJ, Liu L, Wang YS, Yu T (2010) Analysis of horizontal strong-motion attenuation in the great 2008 Wenchuan earthquake. Bull Seismol Soc Am 100(5B):2440–2449 Liang L, Figueroa JL, Saada AS (1995) Liquefaction under random loading: unit energy approach. J Geotech Eng ASCE 121(11):776–781 Lin ML, Liao HJ, Ueng ZS (1999) The geotechnical hazard caused by Chi-Chi earthquake. In: Proceeding of International Workshop on the September 21, 1999 Chi-Chi Earthquake, pp 113–124 Liu Q, Li X (2009) Preliminary analysis of the hanging wall effect and velocity pulse of the 5.12 Wenchuan earthquake. Earthq Eng Eng Vib 8(2):165–177 Liu-Zeng J, Wang P, Zhang ZZ, Li ZG, Cao ZZ, Zhang JY, Yuan XM, Wang W, Xing XC (2017) Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 694:214–238 Lu DW, Li XJ, Cui JW (2010a) Ground motion attenuation of the Wenchuan aftershocks. J Basic Sci Eng 18(Supplement):138–151 (in Chinese) Lu M, Li XJ, An XW, Zhao JX (2010b) A preliminary study on the near-source strong-motion characteristics of the great 2008 Wenchuan earthquake in China. Bull Seismol Soc Am 100(5B):2491–2507 Maurer BW, Green RA, Quigley MC, Bastin S (2015) Development of magnitude-bound relations for paleoliquefaction analyses: New Zealand case study. Eng Geol 197:253–266 Olson SM, Green RA, Obermeier SF (2005a) Revised magnitude-bound relation for the Wabash valley seismic zone of the central United States. Seismol Res Lett 76(6):756–771 Olson SM, Green RA, Obermeier SE (2005b) Geotechnical analysis of paleoseismic shaking using liquefaction features: a major updating. Eng Geol 76:235–261 Oommen T, Baise LG, Vogel RM (2010) Validation and application of empirical liquefaction models. J Geotech Geoenviron Eng ASCE 136(12):1618–1633 Orense RP, Kiyota T, Yamada S, Cubrinovski M, Hosono Y, Okamura M, Yasuda S (2011) Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes. Seismol Res Lett 82(6):905–918 Papadopoulos GA, Lefkopulos G (1993) Magnitude-distance relations for liquefaction in soil from earthquakes. Bull Seismol Soc Am 83(3):925–938 Papathanassiou G, Pavlides S, Christaras B, Pitilakis K (2005) Liquefaction case histories and empirical relations of earthquake magnitude versus distance from the broader Aegean region. J Geodyn 40:257–278 Quigley M, Van Dissen R, Litchfield N, Villamor P, Duffy B, Barrell D, Furlong K, Stahl T, Bilderback E, Noble D (2012) Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: implications for fault rupture dynamics and seismic-hazard analysis. Geology 40(1):55–58 Rollins KM, Evans MD, Diehl NB, Daily WD (1998) Shear modulus and damping relationships for gravels. J Geotech Geoenviron Eng ASCE 124(5):396–405 Rudnicki JW, Freund LB (1981) On energy radiation from seismic sources. Bull Seismol Soc Am 71(3):583–595 Seed HB, Wong RT, Idriss IM, Tokimatsu K (1986) Moduli and damping factors for dynamic analysis of cohesionless soils. J Geotech Eng ASCE 112(11):1016–1032 Seed RB, Cetin KO, Moss RES, Kammerer AM, Wu J (2001) Recent advances in soil liquefaction engineering and seismic site response evaluation. NISEE, Berkeley Smith EGC, Oppenheimer CMM (1989) The Edgecumbe earthquake sequence: 1987 February 21 to March 18. New Zealand J Geol Geophys 32(1):31–42 Street RL, Bauer RA, Woolery EW (2004) Magnitude scaling of prehistorical earthquakes in the Wabash valley seismic zone of the central United States. Seismol Res Lett 75(5):637–641 Trifunac M (1995) Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy. Soil Dyn Earthq Eng 14(6):419–426 USGS (2008) M 7.9—eastern Sichuan, China. Earthquake Hazards Program. https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650#executive. Accessed 26 Mar 2018 Vucetic M, Lanzo G, Doroudian M (1998) Damping at small strains in cyclic simple shear test. J Geotech Geoenviron Eng ASCE 124(7):585–594 Wang CY (2007) Liquefaction beyond the near field. Seismol Res Lett 78(5):512–517 Wang CY, Manga M (2010) Hydrologic responses to earthquakes and a general metric. Geofluids 10(1–2):206–216 Wang FL, Li Y, Li YZ (2003) Sedimentary characteristics of Cenozoic Dayi conglomerate in Chengdu Basin. J Chengdu Univ Technol 30(2):140–146 (in Chinese) Wang CY, Wang CH, Manga M (2004) Coseismic release of water from mountains: evidence from the 1999 (Mw = 7.5) Chi-Chi, Taiwan, earthquake. Geology 32(9):769–772 Wang CY, Wong A, Dreger DS, Manga M (2006) Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation. Bull Seismol Soc Am 96(1):355–363 Wang LM, Wu ZJ, Sun JJ (2009) Characteristics of disasters induced by the Wenchuan 8.0 earthquake and its lessons. In: Tankut AT (ed) Earthquakes and tsunamis: civil engineering disaster mitigation activities implementing millennium development goals. Springer, Dordrecht, pp 179–208. https://doi.org/10.1007/978-90-481-2399-5_11 Wen ZP, XieJJ Gap MT, Hu YM, Chau KT (2010) Near-source strong ground motion characteristics of the 2008 Wenchuan earthquake. Bull Seismol Soc Am 100(5B):2425–2439 Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF Jr, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF III, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Roberson PK, Seed RB, Stokoe KH II (2001) Liquefaction resistance of soils: summary report from the 1996NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng ASCE 127(10):817–833 Yuan XM, Cao ZZ, Sun R, Chen LW, Meng SJ, Dong L, Wang WM, Meng FC, Chen HJ (2009) Preliminary research on liquefaction characteristics of Wenchuan 8.0 earthquake. Chin J Rock Mech Eng 28(6):1288–1296 (in Chinese) Zhang JF, Andrus RD, Juang CH (2005) Normalized shear modulus and material damping ratio relationships. J Geotech Geoenviron Eng ASCE 131(4):453–464 Zhou YG, Chen YM (2007) Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. J Geotech Geoenviron Eng ASCE 133(8):959–972 Zhou YG, Chen YM, Ling DS (2009) Shear wave velocity-based liquefaction evaluation in the great Wenchuan earthquake: a preliminary case study. Earthq Eng Eng Vib 8(2):230–239 Zhou YG, Chen YM, Shamoto Y (2010) Verification of the soil-type specific correlation between liquefaction resistance and shear-wave velocity of sand by dynamic centrifuge test. J Geotech Geoenviron Eng ASCE 136(1):165–177