Threshold Regression for Survival Analysis: Modeling Event Times by a Stochastic Process Reaching a Boundary

Statistical Science - Tập 21 Số 4 - 2006
Mei‐Ling Ting Lee1, G. À. Whitmore
1Ohio State University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kalbfleisch, J. D. and Prentice, R. L. (1980). <i>The Statistical Analysis of Failure Time Data</i>. Wiley, New York.

Cox, D. R. and Oakes, D. (1984). <i>Analysis of Survival Data</i>. Chapman and Hall, London.

Kalbfleisch, J. D. and Prentice, R. L. (2002). <i>The Statistical Analysis of Failure Time Data</i>, 2nd ed. Wiley, New York.

Aalen, O. O. and Gjessing, H. K. (2001). Understanding the shape of the hazard rate: A process point of view. <i>Statist. Sci.</i> <b>16</b> 1--22.

Aalen, O. O. and Gjessing, H. K. (2004). Survival models based on the Ornstein--Uhlenbeck process. <i>Lifetime Data Anal.</i> <b>10</b> 407--423.

Bagdonavičius, V. and Nikulin, M. (2001). Estimation in degradation models with explanatory variables. <i>Lifetime Data Anal.</i> <b>7</b> 85--103.

Carey, M. B. and Koenig, R. H. (1991). Reliability assessment based on accelerated degradation: A case study. <i>IEEE Transactions on Reliability</i> <b>40</b> 499--506.

Crowder, M. J. (2001). <i>Classical Competing Risks</i>. Chapman and Hall/CRC, Boca Raton, FL.

Doksum, K. and Hóyland, A. (1992). Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution. <i>Technometrics</i> <b>34</b> 74--82.

Doksum, K. A. and Normand, S.-L. (1995). Gaussian models for degradation processes. I. Methods for the analysis of biomarker data. <i>Lifetime Data Anal.</i> <b>1</b> 131--144.

Duchesne, T. and Lawless, J. (2000). Alternative time scales and failure time models. <i>Lifetime Data Anal.</i> <b>6</b> 157--179.

Duchesne, T. and Rosenthal, J. S. (2003). On the collapsibility of lifetime regression models. <i>Adv. in Appl. Probab.</i> <b>35</b> 755--772.

Eaton, W. W. and Whitmore, G. A. (1977). Length of stay as a stochastic process: A general approach and application to hospitalization for schizophrenia. <i>J. Math. Sociology</i> <b>5</b> 273--292.

Hazelton, W. D., Luebeck, E. G., Heidenreich, W. F. and Moolgavkar, S. H. (2001). Analysis of a historical cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke exposures using the biologically based two-stage clonal expansion model. <i>Radiation Research</i> <b>156</b> 78--94.

Horrocks, J. C. and Thompson, M. E. (2004). Modelling event times with multiple outcomes using the Wiener process with drift. <i>Lifetime Data Anal.</i> <b>10</b> 29--49.

Hougaard, P., Lee, M.-L. T. and Whitmore, G. A. (1997). Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. <i>Biometrics</i> <b>53</b> 1225--1238.

Kordonsky, K. B. and Gertsbakh, I. (1997). Multiple time scales and the lifetime coefficient of variation: Engineering applications. <i>Lifetime Data Anal.</i> <b>3</b> 139--156.

Lancaster, T. (1972). A stochastic model for the duration of a strike. <i>J. Roy. Statist. Soc. Ser. A</i> <b>135</b> 257--271.

Lawless, J. F. (2003). <i>Statistical Models and Methods for Lifetime Data</i>, 2nd ed. Wiley, New York.

Lawless, J. and Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure. <i>Lifetime Data Anal.</i> <b>10</b> 213--227.

Lee, M.-L. T., DeGruttola, V. and Schoenfeld, D. (2000). A model for markers and latent health status. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>62</b> 747--762.

Lee, M.-L. T. and Whitmore, G. A. (1993). Stochastic processes directed by randomized time. <i>J. Appl. Probab.</i> <b>30</b> 302--314.

Lee, M.-L. T. and Whitmore, G. A. (2002). Assumptions of a latent survival model. In <i>Goodness-of-Fit Tests and Model Validity</i> (C. Huber-Carol, N. Balakrishnan, M. S. Nikulin and M. Mesbah, eds.) 227--235. Birkhäuser, Boston.

Lee M.-L. T. and Whitmore, G. A. (2004). First hitting time models for lifetime data. In <i>Advances in Survival Analysis</i> (C. R. Rao and N. Balakrishnan, eds.) 537--543. North-Holland, Amsterdam.

Lee, M.-L. T., Whitmore, G. A., Laden, F., Hart, J. E. and Garshick, E. (2004). Assessing lung cancer risk in rail workers using a first hitting time regression model. <i>Environmetrics</i> <b>15</b> 501--512.

Lu, C. J. and Meeker, W. Q. (1993). Using degradation measures to estimate a time-to-failure distribution. <i>Technometrics</i> <b>35</b> 161--174.

Lu, J. (1995). A reliability model based on degradation and lifetime data. Ph.D. dissertation, McGill Univ.

Luebeck, E. G., Heidenreich, W. F., Hazelton, W. D., Paretzke, H. G. and Moolgavkar, S. H. (1999). Biologically based analysis of the data for the Colorado uranium miners cohort: Age, dose and dose-rate effects. <i>Radiation Research</i> <b>152</b> 339--351.

Moolgavkar, S. H., Luebeck, E. G. and Anderson, E. L. (1998). Estimation of unit risk for coke oven emissions. <i>Risk Analysis</i> <b>18</b> 813--825.

Oakes, D. (1995). Multiple time scales in survival analysis. <i>Lifetime Data Anal.</i> <b>1</b> 7--18.

Onar, A. and Padgett, W. J. (2000). Inverse Gaussian accelerated test models based on cumulative damage. <i>J. Stat. Comput. Simul.</i> <b>66</b> 233--247.

Padgett, W. J. and Tomlinson, M. A. (2004). Inference from accelerated degradation and failure data based on Gaussian process models. <i>Lifetime Data Anal.</i> <b>10</b> 191--206.

Park, C. and Padgett, W. J. (2005). Accelerated degradation models for failure based on geometric Brownian motion and gamma processes. <i>Lifetime Data Anal.</i> <b>11</b> 511--527.

Pettit, L. I. and Young, K. D. S. (1999). Bayesian analysis for inverse Gaussian lifetime data with measures of degradation. <i>J. Stat. Comput. Simul.</i> <b>63</b> 217--234.

Ricciardi, L. M. and Sato, S. (1988). First-passage-time density and moments of the Ornstein--Uhlenbeck process. <i>J. Appl. Probab.</i> <b>25</b> 43--57.

Shubina, M. (2005a). Bayesian analysis for markers and degradation. Ph.D. dissertation, Harvard School of Public Health.

Shubina, M. (2005b). Threshold models with markers measured before observed event times. Ph.D. dissertation, Harvard School of Public Health.

Singpurwalla, N. D. (1995). Survival in dynamic environments. <i>Statist. Sci.</i> <b>1</b> 86--103.

Whitmore, G. A. (1975). The inverse Gaussian distribution as a model of hospital stay. <i>Health Services Research</i> <b>10</b> 297--302.

Whitmore, G. A. (1979). An inverse Gaussian model for labour turnover. <i>J. Roy. Statist. Soc. Ser. A</i> <b>142</b> 468--478.

Whitmore, G. A. (1983). A regression method for censored inverse-Gaussian data. <i>Canad. J. Statist.</i> <b>11</b> 305--315.

Whitmore, G. A. (1986). First-passage-time models for duration data: Regression structures and competing risks. <i>The Statistician</i> <b>35</b> 207--219.

Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process subject to measurement error. <i>Lifetime Data Anal.</i> <b>1</b> 307--319.

Whitmore, G. A., Crowder, M. J. and Lawless, J. F. (1998). Failure inference from a marker process based on a bivariate Wiener model. <i>Lifetime Data Anal.</i> <b>4</b> 229--251.

Whitmore, G. A. and Neufeldt, A. H. (1970). An application of statistical models in mental health research. <i>Bull. Math. Biophys.</i> <b>32</b> 563--579.

Whitmore, G. A. and Schenkelberg, F. (1997). Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. <i>Lifetime Data Anal.</i> <b>3</b> 27--45.