Three-step semiquantum secure direct communication protocol

Xiangfu Zou1,2,3, Daowen Qiu1,4
1Department of Computer Science, Sun Yat-sen University, Guangzhou, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
3School of Mathematics and Computational Science, Wuyi University, Jiangmen, China
4SQIG-Instituto de Telecomunicações, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. Santa Fe: IEEE Computer Society Press, 1994. 124–134

Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE, 1984. 175–179

Ekert A K. Quantum cryptography based on Bells theorem. Phys Rev Lett, 1991, 67: 661–663

Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050

Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441–444

Mayers D. Unconditional security in quantum cryptography. J Assn Comput Mach, 2001, 48: 351–406

Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

Hwang W Y. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901

Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503

Lo H K, Ma X, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev Lett, 2008, 78: 022321

Boyer M, Kenigsberg D, Mor T. Quantum key distribution with classical Bob. Phys Rev Lett, 2007, 99: 140501

Tan Y G, Lu H, Cai Q Y. Comment on “Quantum key distribution with classical Bob”. Phys Rev Lett, 2009, 102: 098901

Boyer M, Kenigsberg D, Mor T. Boyer, Kenigsberg, and Mor Reply. Phys Rev Lett, 2009, 102: 098902

Boyer M, Gelles R, Kenigsberg D, et al. Semiquantum key distribution. Phys Rev A, 2009, 79: 032341

Lu H, Cai Q Y. Quantum key distribution with classical Alice. Int J Quantum Inf, 2008, 6: 1195–1202

Zou X, Qiu D, Li L, et al. Semiquantum-key distribution using less than four quantum states. Phys Rev A, 2009, 79: 052312

Boyer M, Mor T. Comment on “Semiquantum-key distribution using less than four quantum states”. Phys Rev A, 2011, 83: 046301

Zou X, Qiu D. Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states’”. Phys Rev A, 2011, 83: 046302

Miyadera T. Relation between information and disturbance in quantum key distribution protocol with classical Alice. arXiv:1105.2499, 2011

Boyer M, Mor T. On the robustness of (photonic) quantum key distribution with classical Alice. arXiv:1012.2418, 2010

Zhang X Z, Gong W G, Tan Y G, et al. Quantum key distribution series network protocol with M-classical Bobs. Chin Phys B, 2009, 18: 2143–2148

Wang J, Zhang S, Zhang Q, et al. Semiquantum key distribution using entangled states. Chin Phys Lett, 2011, 28: 100301

Li Q, Chan W H, Long D Y. Semiquantum secret sharing using entangled states. Phys Rev A, 2010, 82: 022303

Wang J, Zhang S, Zhang Q, et al. Semiquantum secret sharing using two-particle entangled state. Int J Quantum Inf, 2012, 10: 1250050

Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

Wójcik A. Eavesdropping on the “ping-pong” quantum communication protocol. Phys Rev Lett, 2003, 90: 157901

Zhang Z, Man Z, Li Y. Improving Wójcik’s eavesdropping attack on the ping-pong protocol. Phys Lett A, 2004, 333: 46–50

Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

Gao T, Yan F L, Wang Z X. Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo Cimento Della Societa Italiana Di Fisica. B, Relativ Class Statist Phys, 2004, 119: 313–318

Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18

Gao T, Yan F, Wang Z. Quantum secure conditional direct communication via EPR pairs. Int J Mod Phys C, 2005, 16: 1293–1301

Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 44305

Wang C, Hao L, Song S Y, et al. Quantum direct communication based on quantum search algorithm. Int J Quantum Inf, 2010, 8: 443–450

Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149

Wang T J, Li T, Du F F, et al. High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin Phys Lett, 2011, 28: 040305

Gu B, Huang Y G, Fang X, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20: 100309

Gu B, Huang Y G, Fang X, et al. Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun Theor Phys, 2011, 56: 659

Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China Ser A, 2011, 54: 942–947

Shi J, Gong Y X, Xu P, et al. Quantum secure direct communication by using three-dimensional hyperentanglement. Commun Theor Phys, 2011, 56: 831

Gao G, Fang M, Yang R M. Quantum secure direct communication by swapping entanglements of 3 × 3-dimensional Bell states. Int J Theor Phys, 2011, 50: 882–887

Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923–2929

Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946–1952

Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 1–8

Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338

Long G, Deng F, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2: 251–272

Yan F, Zhang X. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22

Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ swapping quantum entanglement. J Phys-A-Math Gen, 2005, 38: 5761

Wang J, Zhang Q, Tang C. Quantum secure direct communication without using perfect quantum channel. Int J Mod Phys C, 2006, 17: 685–692

Wang J, Zhang Q, Tang C. Quantum secure direct communication without a pre-established secure quantum channel. Int J Quantum Inf, 2006, 4: 925–934

Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

Wang H F, Zhang S, Yeon K H, et al. Quantum secure direct communication by using a GHZ state. J Korean Phys Soc, 2006, 49: 459–463

Schneier B. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Manhattan: John Wiley & Sons, 1996

Brunel C, Lounis B, Tamarat P, et al. Triggered source of single photons based on controlled single molecule fluorescence. Phys Rev Lett, 1999, 83: 2722–2725

Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290: 2282–2285

Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 2001, 409: 490–493

Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor. Phys Rev Lett, 2001, 86: 783–786

Kraus K, Böhm A, Dollard J D, et al. States, effects, and operations fundamental notions of quantum theory. Lect Note Phys, 1983, 190: 103–149

Steane A M. Simple quantum error-correcting codes. Phys Rev A, 1996, 54: 4741

Steane A M. Error correcting codes in quantum theory. Phys Rev Lett, 1996, 77: 793–797

Calderbank A R, Shor P W. Good quantum error-correcting codes exist. Phys Rev A, 1996, 54: 1098