Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem

Swarm and Evolutionary Computation - Tập 39 - Trang 279-296 - 2018
Mingchang Chih1
1Department of Business Administration, National Chung Hsing University, South District, Taichung 402, Taiwan, ROC

Tài liệu tham khảo

Fréville, 2004, The multidimensional 0-1 knapsack problem: an overview, Eur. J. Oper. Res., 155, 1, 10.1016/S0377-2217(03)00274-1 Garey, 1979 Drexel, 1988, A simulated annealing approach to the multiconstraint zero-one knapsack problem, Computing, 40, 1, 10.1007/BF02242185 Vasquez, 2005, Improved results on the 0-1 multidimensional knapsack problem, Eur. J. Oper. Res., 165, 70, 10.1016/j.ejor.2004.01.024 Chu, 1998, A genetic algorithm for the multidimensional knapsack problem, J. Heuristics, 4, 63, 10.1023/A:1009642405419 Kong, 2008, A new ant colony optimization algorithm for the multidimensional knapsack problem, Comput. Oper. Res., 35, 2672, 10.1016/j.cor.2006.12.029 Gao, 2014, A quantum-inspired artificial immune system for the multiobjective 0-1 knapsack problem, Appl. Math. Comput., 230, 120 Feng, 2017, Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization, Neural Comput. Appl., 28, 1619, 10.1007/s00521-015-2135-1 Feng, 2017, Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem, Neural Comput. Appl., 1 Feng, 2015, An improved hybrid encoding firefly algorithm for randomized time-varying knapsack problems, 9 Feng, 2016, A novel hybrid cuckoo search algorithm with global harmony search for 0-1 knapsack problems, Int. J. Comput. Intell. Syst., 9, 1174, 10.1080/18756891.2016.1256577 Haddar, 2016, A hybrid quantum particle swarm optimization for the multidimensional knapsack problem, Eng. Appl. Artif. Intell., 55, 1, 10.1016/j.engappai.2016.05.006 Wang, 2014, A novel improved accelerated particle swarm optimization algorithm for global numerical optimization, Eng. Comput., 31, 1198, 10.1108/EC-10-2012-0232 Kennedy, 1995, Particle swarm optimization, vol. 4, 1942 Kennedy, 1997, A discrete binary version of the particle swarm algorithm, vol. 5, 4104 Raitoharju, 2017, Particle swarm clustering fitness evaluation with computational centroids, Swarm Evol. Comput., 34, 103, 10.1016/j.swevo.2017.01.003 Azadeh, 2013, A hybrid meta-heuristic algorithm for optimization of crew scheduling, Appl. Soft Comput., 13, 158, 10.1016/j.asoc.2012.08.012 Das, 2016, A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning, Swarm Evol. Comput., 28, 14, 10.1016/j.swevo.2015.10.011 Chih, 2011, Particle swarm optimization for the economic and statistical designs of the X¯ control chart, Appl. Soft Comput., 11, 5053, 10.1016/j.asoc.2011.05.053 Yeh, 2010, A particle swarm optimization approach based on Monte Carlo simulation for solving the complex network reliability problem, IEEE Trans. Reliab., 59, 212, 10.1109/TR.2009.2035796 Dabiri, 2017, New mathematical model for the bi-objective inventory routing problem with a step cost function: a multi-objective particle swarm optimization solution approach, Appl. Math. Model., 49, 302, 10.1016/j.apm.2017.03.022 Chouikhi, 2017, PSO-based analysis of Echo State Network parameters for time series forecasting, Appl. Soft Comput., 55, 211, 10.1016/j.asoc.2017.01.049 Marinakis, 2017, A hybrid particle swarm optimization - variable neighborhood search algorithm for constrained shortest path problems, Eur. J. Oper. Res., 261, 819, 10.1016/j.ejor.2017.03.031 Chen, 2014, Hybrid algorithm for the two-dimensional rectangular layer-packing problem, J. Oper. Res. Soc., 65, 1068, 10.1057/jors.2013.54 Dai, 2016, Discrete particle swarm optimization approach for cost sensitive attribute reduction, Knowl. Based Syst., 102, 116, 10.1016/j.knosys.2016.04.002 Chih, 2013, Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem, Appl. Math. Model., 38, 1338, 10.1016/j.apm.2013.08.009 Chih, 2015, Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem, Appl. Soft Comput., 26, 378, 10.1016/j.asoc.2014.10.030 Beasley, 2005 Shi, 1999, Empirical study of particle swarm optimization, vol. 3, 1945 Ratnweera, 2004, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., 8, 240, 10.1109/TEVC.2004.826071 Bansal, 2012, A modified binary particle swarm optimization for knapsack problems, Appl. Math. Comput., 218, 11042 Magazine, 1975, When the greedy solution solves a class of knapsack problem, Oper. Res., 23, 207, 10.1287/opre.23.2.207 Beheshti, 2013, Binary accelerated particle swarm algorithm (BAPSA) for discrete optimization problems, J. Glob. Optim., 57, 549, 10.1007/s10898-012-0006-1 Pirkul, 1987, A heuristic solution procedure for the multiconstraint zero-one knapsack problem, Nav. Res. Logist., 34, 161, 10.1002/1520-6750(198704)34:2<161::AID-NAV3220340203>3.0.CO;2-A Kong, 2015, Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm, Comput. Oper. Res., 63, 7, 10.1016/j.cor.2015.04.018 Senyu, 1967, An approach to linear programming with 0-1 variables, Manag. Sci., 15, B196 Weingartner, 1967, Methods for the solution of the multi-dimensional 0/1 knapsack problem, Oper. Res., 15, 83, 10.1287/opre.15.1.83 Shih, 1979, A branch and bound method for the multiconstraint zero-one knapsack problems, J. Oper. Res. Soc., 30, 369, 10.1057/jors.1979.78 Fréville, 1990, Hard 0-1 multiknapsack test problems for size reduction methods, Investig. Oper., 1, 251 Tachugi, 1987 Lin, 2016, A binary particle swarm optimization based on the surrogate information with proportional acceleration coefficients for the 0-1 multidimensional knapsack problem, J. Ind. Prod. Eng., 33, 77 Zouache, 2016, Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems, Soft Comput., 20, 2781, 10.1007/s00500-015-1681-x Derrac, 2011, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1, 3, 10.1016/j.swevo.2011.02.002