Three new megastigmanes from the leaves of Annona muricata

Journal of Natural Medicines - Tập 66 - Trang 284-291 - 2011
Ayano Matsushige1, Katsuyoshi Matsunami2, Yaichiro Kotake1, Hideaki Otsuka2, Shigeru Ohta1
1Department of Xenobiotic Metabolism and Molecular Toxicology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
2Department of Pharmacognosy, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan

Tóm tắt

Three new megastigmanes (1–3), named annoionols A and B (1, 2) and annoionoside (3), were isolated from the leaves of Annona muricata L. (Annonaceae) together with 14 known compounds (4–17). Among the known compounds, annoionol C (4) was isolated from a natural source for the first time. The structures of all compounds were elucidated by spectroscopic and chemical analyses.

Tài liệu tham khảo

Lannuzel A, Höglinger GU, Champy P, Michel PP, Hirsch EC, Ruberg M (2006) Is atypical parkinsonism in the Caribbean caused by the consumption of Annonaceae? J Neural Transm Suppl 70:153–157 Shitamoto J, Matsunami K, Otsuka H, Shinzato T, Takeda Y (2010) Elaeocarpionoside, a megastigmane glucoside from the leaves of Elaeocarpus japonicus Sieb. et Zucc. J Nat Med 64:104–108 Liu YP, Cai XH, Feng T, Li Y, Li XN, Luo XD (2011) Triterpene and sterol derivatives from the roots of Breynia fruticosa. J Nat Prod 74:1161–1168 Kusumi T, Ooi T, OhkuboY YabuuchiT (2006) The modified Mosher’s method and the sulfoximine method. Bull Chem Soc Jpn 79:965–980 Kasai R, Suzuno M, Asakawa J, Tanaka O (1977) Carbon-13 chemical shifts of isoprenoid-β-d-glucopyranosides and -β-d-mannopyranosides. Stereochemical influences of aglycone alcohols. Tetrahedron Lett 18:175–178 Sueyoshi E, Liu H, Matsunami K, Otsuka H, Shinzato T, Aramoto M, Takeda Y (2006) Bridelionosides A–F: megastigmane glucosides from Bridelia glauca f. balansae. Phytochemistry 67:2483–2493 Pasi S, Aligiannis N, Pratsinis H, Skaltsounis AL, Chinou LB (2009) Rhusonoside A, a new megastigmane glycoside from Rhus sylvestris, increases the function of osteoblastic MC3T3-E1 cells. Planta Med 75:163–167 Xu Y, Feng T, Cai XH, Luo XD (2009) A new C13-norisoprenoid from leaves of Alstonia scholaris. Zhongguo Tianran Yaowu 7:21–23 Zhang Z, Zhen W, Ji YP, Zhao Y, Wang CG, Hu JF (2010) Gynostemosides A–E, megastigmane glycosides from Gynostemma pentaphyllum. Phytochemistry 71:693–700 Mei W, Dai H, Wu D (2006) Isolation and identification of chemical constituents from Cephalomappa sinensis. Zhongguo Yaowu Huaxue Zazhi 16:240–243 Perez C, Trujillo JM, Almonacid LN, Navarro E, Alonso SJ (1996) New C13-norisoprenoids from Apollonias barbujana. Nat Prod Lett 8:1–6 Kuang HX, Yang BY, Xia YG, Feng WS (2008) Chemical constituents from the flowers of Datura metel L. Arch Pharm Res 31:1094–1097 Otsuka H, Yao M, Kamada K, Takeda Y (1995) Alangionosides G–M: glycosides of megastigmane derivatives from the leaves of Alangium premnifolium. Chem Pharm Bull 43:754–759 Kawakami S, Matsunami K, Otsuka H, Shinzato T, Takeda Y (2011) Crotonionosides A–G: megastigmane glycosides from leaves of Croton cascarilloides Raeuschel. Phytochemistry 72:147–153 Yu Q, Otsuka H, Hirata E, Shinzato T, Takeda Y (2002) Turpinionosides A–E: megastigmane glucosides from leaves of Turpinia ternata Nakai. Chem Pharm Bull 50:640–644 Umehara K, Hattori I, Miyase T, Ueno A, Hara S, Kageyama C (1988) Studies on the constituents of leaves of Citrus unshiu Marcov. Chem Pharm Bull 36:5004–5008 Matsunami K, Otsuka H, Takeda Y (2010) Structural revisions of blumenol C glucoside and byzantionoside B. Chem Pharm Bull 58:438–441 Mori K, Khlebnikov V (1993) Carotenoids and degraded carotenoids, VIII – Synthesis of (+)-dihydroactinidiolide, (+)- and (−)-actinidiolide, (+)- and (−)-loliolide as well as (+)- and (−)-epiloliolide. Liebigs Ann Chem 1993: 77–82 Kim, Lee SK, Kim CS, Kim KS, Moon DC (2004) Phytochemical constituents of Carpesium macrocephalum F(R). et S(AV). Arch Pharm Res 27:1029–1033 Someya Y, Kobayashi A, Kubota K (2001) Isolation and identification of trans-2- and trans-3-hydroxy-1,8-cineole glucosides from Alpinia galanga. Biosci Biotechnol Biochem 65:950–953 Mizutani K, Yuda M, Tanaka O, Saruwatari Y, Fuwa T, Jia MR, Ling YK, Pu XF (1988) Chemical studies on the Chinese traditional medicine, dangshen. I. Isolation of (Z)-3- and (E)-2-hexenyl β-d-glucosides. Chem Pharm Bull 36:2689–2690 Ly TN, Shimoyamada M, Yamauchi R (2006) Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. J Agric Food Chem 54:3786–3793 Beck MA, Haberlein H (1999) Flavonol glycosides from Eschscholtzia californica. Phytochemistry 50:329–332 Brasseur T, Angenot L (1986) Flavonol glycosides from leaves of Strychnos variabilis. Phytochemistry 25:563–564 Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23 Matsunami K, Takamori I, Shinzato T, Aramoto M, Kondo K, Otsuka H, Takeda Y (2006) Radical-scavenging activities of new megastigmane glucosides from Macaranga tanarius (L.) Müll.-Arg. Chem Pharm Bull 54:1403–1407 Yen CT, Wu CC, Lee JC, Chen SL, Morris NSL, Hsieh PW, Wu YC (2010) Cytotoxic N-(fluorenyl-9-methoxycarbonyl) (Fmoc)-dipeptides: Structure–activity relationships and synergistic studies. Eur J Med Chem 45:2494–2502