Three mutually adjacent Leonard pairs

Linear Algebra and Its Applications - Tập 408 - Trang 19-39 - 2005
Brian Hartwig1
1Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI, 53706 USA

Tài liệu tham khảo

Ito, 2000, Some algebra related to P- and Q-polynomial association schemes Terwilliger, 2001, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl., 330, 149, 10.1016/S0024-3795(01)00242-7 Terwilliger, 2002, Leonard pairs from 24 points of view, Rocky Mountain J. Math., 32, 827, 10.1216/rmjm/1030539699 P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other: the TD–D and the LB–UB canonical form, J. Algebra, submitted for publication. Terwilliger, 2000, Two relations that generalize the q-Serre relations and the Dolan-Grady relations Terwilliger, 2003, Introduction to Leonard pairs. OPSFA Rome 2001, J. Comput. Appl. Math., 153, 463, 10.1016/S0377-0427(02)00600-3 Terwilliger, 1999, Introduction to Leonard pairs and Leonard systems, Surikaisekikenkyusho Kokyuroku, 67 Terwilliger, 2005, Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the split decomposition, J. Comput. Appl. Math., 178, 437, 10.1016/j.cam.2004.04.017 Terwilliger, 2005, Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the parameter array, Des. Codes Cryptogr., 34, 307, 10.1007/s10623-004-4862-7 Terwilliger, 2004, Leonard pairs and the q-Racah polynomials, Linear Algebra Appl., 387, 235, 10.1016/j.laa.2004.02.014