Three-dimensional tetrahexcarbon: Stability and properties
Tài liệu tham khảo
Fan, 2021, Biphenylene network: a nonbenzenoid carbon allotrope, Science, 372, 852, 10.1126/science.abg4509
Obeid, 2022, Assembling biphenylene into 3D porous metallic carbon allotrope for promising anode of lithium-ion batteries, Carbon, 188, 95, 10.1016/j.carbon.2021.11.056
Younis, 2019, Tuning the properties of tetracene-based nanoribbons by fluorination and N-doping, ChemPhysChem, 20, 2799, 10.1002/cphc.201900803
Younis, 2020, Design of tetracene-based metallic 2D carbon materials for Na- and K-Ion batteries, Appl. Surf. Sci., 521, 146456, 10.1016/j.apsusc.2020.146456
Yang, 2020, Systematic theoretical study of carbon nanotubes rolled from a two-dimensional tetrahex-carbon nanosheet, Phys. Rev. B - Condens. Matter Mater. Phys., 102, 235409, 10.1103/PhysRevB.102.235409
De Vasconcelos, 2019, Electronic properties of tetragraphene nanoribbons, Phys. Rev. Mater., 3
Ram, 2018, Tetrahexcarbon: a two-dimensional allotrope of carbon, Carbon, 137, 266, 10.1016/j.carbon.2018.05.034
De Vasconcelos, 2020, Electronic and structural properties of tetragraphenes, Carbon, 167, 403, 10.1016/j.carbon.2020.05.030
Kilic, 2020, Tuning the electronic, mechanical, thermal, and optical properties of tetrahexcarbon via hydrogenation, Carbon, 161, 71, 10.1016/j.carbon.2020.01.027
Hoat, 2021, Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study, Indian J. Phys., 1
Wei, 2020, Auxetic tetrahex carbon with ultrahigh strength and a direct band gap, Phys. Rev. Appl., 13, 10.1103/PhysRevApplied.13.034065
Kilic, 2021, Tetrahex carbides: two-dimensional group-IV materials for nanoelectronics and photocatalytic water splitting, Carbon, 174, 368, 10.1016/j.carbon.2020.12.003
Kilic, 2021, Novel two-dimensional Group-IV carbides containing C2 dimers: sizable direct band gap, high carrier mobility, and anisotropic properties for nanoelectronics, Carbon, 181, 421, 10.1016/j.carbon.2021.04.092
Wende, 2019, OpenMP in VASP: threading and SIMD, Int. J. Quant. Chem., 119, 25851, 10.1002/qua.25851
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B - Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169
Joubert, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B - Condens. Matter Mater. Phys., 59, 1758, 10.1103/PhysRevB.59.1758
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Heyd, 2003, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B - Condens. Matter Mater. Phys., 13, 5188, 10.1103/PhysRevB.13.5188
Togo, 2015, First principles phonon calculations in materials science, Scripta Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021
Muhammad, 2021, Borophene-based three-dimensional porous structures as anode materials for alkali metal-ion batteries with ultrahigh capacity, Chem. Mater., 33, 2976, 10.1021/acs.chemmater.1c00517
Nosé, 1984, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 511, 10.1063/1.447334
Hussain, 2021, 3D porous metallic boron carbide crystal structure with excellent ductility, Adv. Theory Simulations, 2100325, 10.1002/adts.202100325
Lv, 2021, Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond, Chin. Phys. Lett., 38, 10.1088/0256-307X/38/7/076101
Tromer, 2021, A DFT investigation of the electronic, optical, and thermoelectric properties of pentadiamond, Chem. Phys. Lett., 763, 138210, 10.1016/j.cplett.2020.138210
Wang, 2016, C20 - T carbon: a novel superhard sp3 carbon allotrope with large cavities, J. Phys. Condens. Matter, 28, 475402, 10.1088/0953-8984/28/47/475402
Hussain, 2020, Three-dimensional porous borocarbonitride BC2N with negative Poisson's ratio, J. Mater. Chem. C., 8, 15771, 10.1039/D0TC03832F
Cheng, 2016, Three dimensional metallic carbon from distorting sp3-bond,, Cryst. Growth Des, 16, 1360, 10.1021/acs.cgd.5b01490
Gajdoš, 2006, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B - Condens. Matter Mater. Phys., 73, 10.1103/PhysRevB.73.045112
Hill, 1952, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc., 65, 349, 10.1088/0370-1298/65/5/307
Chung, 1967, The Voigt-Reuss-Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe, J. Appl. Phys., 38, 2535, 10.1063/1.1709944
Le Page, 2002, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B - Condens. Matter Mater. Phys., 65, 1, 10.1103/PhysRevB.65.104104
Mouhat, 2014, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B - Condens. Matter Mater. Phys., 90, 10.1103/PhysRevB.90.224104
Pugh, 1954, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci., 45, 823, 10.1080/14786440808520496
Han, 2020, Structural, mechanical, and thermodynamic properties of newly-designed superhard carbon materials in different crystal structures: a first-principles calculation, Comput. Mater. Sci., 171, 109229, 10.1016/j.commatsci.2019.109229
He, 2017, New candidate for the simple cubic carbon sample shock-synthesized by compression of the mixture of carbon black and tetracyanoethylene, Carbon, 112, 91, 10.1016/j.carbon.2016.11.008
Grimsditch, 1975, Brillouin scattering in diamond, Phys. Rev. B - Condens. Matter Mater. Phys., 11, 3139, 10.1103/PhysRevB.11.3139
Mounet, 2005, First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives, Phys. Rev. B - Condens. Matter Mater. Phys., 71, 205214, 10.1103/PhysRevB.71.205214
Chen, 2011, Intrinsic correlation between hardness and elasticity in polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275, 10.1016/j.intermet.2011.03.026
Solozhenko, 2001, Synthesis of superhard cubic BC2N, Appl. Phys. Lett., 78, 1385, 10.1063/1.1337623
Kube, 2016, Elastic anisotropy of crystals, AIP Adv., 6, 10.1063/1.4962996
Hu, 2012, Exotic cubic carbon allotropes, J. Phys. Chem. C, 116, 24233, 10.1021/jp3064323
Wang, 2004, Determination of acoustic wave velocities and elastic properties for diamond and other hard materials, Mater. Chem. Phys., 85, 432, 10.1016/j.matchemphys.2004.02.003
Gaillac, 2016, ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28, 275201, 10.1088/0953-8984/28/27/275201
Anderson, 1963, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solid., 24, 909, 10.1016/0022-3697(63)90067-2
Fan, 2018, D-carbon: ab initio study of a novel carbon allotrope, J. Chem. Phys., 149, 114702, 10.1063/1.5037380
Arab, 2016, Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN2: an ab initio study, Phase Transitions, 89, 480, 10.1080/01411594.2015.1089574
Kim, 2015, Synthesis of an open-framework allotrope of silicon, Nat. Mater., 14, 169, 10.1038/nmat4140
Liu, 2018, High-pressure-assisted design of porous topological semimetal carbon for Li-ion battery anode with high-rate performance, Phys. Rev. Mater., 2