Three-dimensional tetrahexcarbon: Stability and properties

Materials Today Physics - Tập 23 - Trang 100628 - 2022
K. Hussain1, P.H. Du1, T. Mahmood2, Y. Kawazoe3,4,5, Q. Sun1
1School of Materials Science and Engineering, CAPT, Peking University, Beijing, 100871, China
2Department of Physics, Govt. College Women University, Sialkot, 51310, Pakistan
3New Industry Creation Hatchery Center, Tohoku University, Sendai, 980–8577, Japan
4Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
5Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

Tài liệu tham khảo

Fan, 2021, Biphenylene network: a nonbenzenoid carbon allotrope, Science, 372, 852, 10.1126/science.abg4509 Obeid, 2022, Assembling biphenylene into 3D porous metallic carbon allotrope for promising anode of lithium-ion batteries, Carbon, 188, 95, 10.1016/j.carbon.2021.11.056 Younis, 2019, Tuning the properties of tetracene-based nanoribbons by fluorination and N-doping, ChemPhysChem, 20, 2799, 10.1002/cphc.201900803 Younis, 2020, Design of tetracene-based metallic 2D carbon materials for Na- and K-Ion batteries, Appl. Surf. Sci., 521, 146456, 10.1016/j.apsusc.2020.146456 Yang, 2020, Systematic theoretical study of carbon nanotubes rolled from a two-dimensional tetrahex-carbon nanosheet, Phys. Rev. B - Condens. Matter Mater. Phys., 102, 235409, 10.1103/PhysRevB.102.235409 De Vasconcelos, 2019, Electronic properties of tetragraphene nanoribbons, Phys. Rev. Mater., 3 Ram, 2018, Tetrahexcarbon: a two-dimensional allotrope of carbon, Carbon, 137, 266, 10.1016/j.carbon.2018.05.034 De Vasconcelos, 2020, Electronic and structural properties of tetragraphenes, Carbon, 167, 403, 10.1016/j.carbon.2020.05.030 Kilic, 2020, Tuning the electronic, mechanical, thermal, and optical properties of tetrahexcarbon via hydrogenation, Carbon, 161, 71, 10.1016/j.carbon.2020.01.027 Hoat, 2021, Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study, Indian J. Phys., 1 Wei, 2020, Auxetic tetrahex carbon with ultrahigh strength and a direct band gap, Phys. Rev. Appl., 13, 10.1103/PhysRevApplied.13.034065 Kilic, 2021, Tetrahex carbides: two-dimensional group-IV materials for nanoelectronics and photocatalytic water splitting, Carbon, 174, 368, 10.1016/j.carbon.2020.12.003 Kilic, 2021, Novel two-dimensional Group-IV carbides containing C2 dimers: sizable direct band gap, high carrier mobility, and anisotropic properties for nanoelectronics, Carbon, 181, 421, 10.1016/j.carbon.2021.04.092 Wende, 2019, OpenMP in VASP: threading and SIMD, Int. J. Quant. Chem., 119, 25851, 10.1002/qua.25851 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B - Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169 Joubert, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B - Condens. Matter Mater. Phys., 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Heyd, 2003, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B - Condens. Matter Mater. Phys., 13, 5188, 10.1103/PhysRevB.13.5188 Togo, 2015, First principles phonon calculations in materials science, Scripta Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021 Muhammad, 2021, Borophene-based three-dimensional porous structures as anode materials for alkali metal-ion batteries with ultrahigh capacity, Chem. Mater., 33, 2976, 10.1021/acs.chemmater.1c00517 Nosé, 1984, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 511, 10.1063/1.447334 Hussain, 2021, 3D porous metallic boron carbide crystal structure with excellent ductility, Adv. Theory Simulations, 2100325, 10.1002/adts.202100325 Lv, 2021, Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond, Chin. Phys. Lett., 38, 10.1088/0256-307X/38/7/076101 Tromer, 2021, A DFT investigation of the electronic, optical, and thermoelectric properties of pentadiamond, Chem. Phys. Lett., 763, 138210, 10.1016/j.cplett.2020.138210 Wang, 2016, C20 - T carbon: a novel superhard sp3 carbon allotrope with large cavities, J. Phys. Condens. Matter, 28, 475402, 10.1088/0953-8984/28/47/475402 Hussain, 2020, Three-dimensional porous borocarbonitride BC2N with negative Poisson's ratio, J. Mater. Chem. C., 8, 15771, 10.1039/D0TC03832F Cheng, 2016, Three dimensional metallic carbon from distorting sp3-bond,, Cryst. Growth Des, 16, 1360, 10.1021/acs.cgd.5b01490 Gajdoš, 2006, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B - Condens. Matter Mater. Phys., 73, 10.1103/PhysRevB.73.045112 Hill, 1952, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc., 65, 349, 10.1088/0370-1298/65/5/307 Chung, 1967, The Voigt-Reuss-Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe, J. Appl. Phys., 38, 2535, 10.1063/1.1709944 Le Page, 2002, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B - Condens. Matter Mater. Phys., 65, 1, 10.1103/PhysRevB.65.104104 Mouhat, 2014, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B - Condens. Matter Mater. Phys., 90, 10.1103/PhysRevB.90.224104 Pugh, 1954, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci., 45, 823, 10.1080/14786440808520496 Han, 2020, Structural, mechanical, and thermodynamic properties of newly-designed superhard carbon materials in different crystal structures: a first-principles calculation, Comput. Mater. Sci., 171, 109229, 10.1016/j.commatsci.2019.109229 He, 2017, New candidate for the simple cubic carbon sample shock-synthesized by compression of the mixture of carbon black and tetracyanoethylene, Carbon, 112, 91, 10.1016/j.carbon.2016.11.008 Grimsditch, 1975, Brillouin scattering in diamond, Phys. Rev. B - Condens. Matter Mater. Phys., 11, 3139, 10.1103/PhysRevB.11.3139 Mounet, 2005, First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives, Phys. Rev. B - Condens. Matter Mater. Phys., 71, 205214, 10.1103/PhysRevB.71.205214 Chen, 2011, Intrinsic correlation between hardness and elasticity in polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275, 10.1016/j.intermet.2011.03.026 Solozhenko, 2001, Synthesis of superhard cubic BC2N, Appl. Phys. Lett., 78, 1385, 10.1063/1.1337623 Kube, 2016, Elastic anisotropy of crystals, AIP Adv., 6, 10.1063/1.4962996 Hu, 2012, Exotic cubic carbon allotropes, J. Phys. Chem. C, 116, 24233, 10.1021/jp3064323 Wang, 2004, Determination of acoustic wave velocities and elastic properties for diamond and other hard materials, Mater. Chem. Phys., 85, 432, 10.1016/j.matchemphys.2004.02.003 Gaillac, 2016, ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28, 275201, 10.1088/0953-8984/28/27/275201 Anderson, 1963, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solid., 24, 909, 10.1016/0022-3697(63)90067-2 Fan, 2018, D-carbon: ab initio study of a novel carbon allotrope, J. Chem. Phys., 149, 114702, 10.1063/1.5037380 Arab, 2016, Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN2: an ab initio study, Phase Transitions, 89, 480, 10.1080/01411594.2015.1089574 Kim, 2015, Synthesis of an open-framework allotrope of silicon, Nat. Mater., 14, 169, 10.1038/nmat4140 Liu, 2018, High-pressure-assisted design of porous topological semimetal carbon for Li-ion battery anode with high-rate performance, Phys. Rev. Mater., 2