Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star

Astronomy and Astrophysics - Tập 613 - Trang A8 - 2018
J. Figueira1,2, J. José1,2, E. Garcı́a–Berro3,2, S. W. Campbell4,5,6, Domingo Garcı́a-Senz1,2, S. Mohamed7,8,9
1Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/ Eduard Maristany 10, 08930 Barcelona, Spain
2Institut d'Estudis Espacials de Catalunya, c/ Gran Capità 2-4, Ed. Nexus-201, 08034 Barcelona, Spain
3Departament de Física, Universitat Politècnica de Catalunya, c/ Esteve Terrades 5, 08860 Castelldefels, Spain
4Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching bei München, Germany
5Monash Centre for Astrophysics (MoCA), Monash University, Clayton 3800, Victoria, Australia
6School of Physics and Astronomy, Monash University, Clayton 3800, Victoria, Australia
7Astronomy Department, University of Cape Town, 7701 Rodenbosch, South Africa
8South Africa National Institute for Theoretical Physics, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
9South African Astronomical Observatory, PO Box 9, Observatory Rd., 7935 Cape Town, South Africa

Tóm tắt

Context.Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions andβ+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10−310−7M, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium.Aims.To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star.Methods.A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system.Results.We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle.

Từ khóa


Tài liệu tham khảo

Abdo, 2010, Science, 329, 817, 10.1126/science.1192537

Ackermann, 2014, Science, 345, 554, 10.1126/science.1253947

Amari, 2002, NewAR, 46, 519, 10.1016/S1387-6473(02)00194-X

Amari, 2001, ApJ, 551, 1065, 10.1086/320235

Barnes, 1986, Nature, 324, 446, 10.1038/324446a0

Balsara, 1995, J. Comput. Phys., 121, 357, 10.1016/S0021-9991(95)90221-X

Cameron, 1959, ApJ, 130, 916, 10.1086/146782

Drake, 2010, ApJ, 720, L195, 10.1088/2041-8205/720/2/L195

Evans A., & Rawlings M. C. 2008, in Classical Novae, 2nd edn., eds. Bode M. F., & Evans A. (Cambridge, UK: Cambridge Univ. Press), 308

Frank J., King A., & Raine D. 2002, Accretion Power in Astrophysics, 3rd edn. (Cambridge, UK: Cambridge Univ. Press)

García-Senz, 2012, ApJ, 745, 75, 10.1088/0004-637X/745/1/75

Gehrz R. 2008, in Classical Novae, 2nd edn., eds. Bode M. F., & Evans A. (Cambridge, UK: Cambridge Univ. Press), 167

Gehrz, 1998, PASP, 110, 3, 10.1086/316107

Giannone, 1967, Z. Astrophys., 67, 41

Gurevitch L. E., & Lebedinsky A. I., 1957, in Non-Stable Stars, eds. Herbig G. H. (Cambridge, UK: Cambridge Univ. Press), 77

Hernanz, 2002, Science, 298, 393, 10.1126/science.298.5592.393

José J. 2016, Stellar Explosions: Hydrodynamics and Nucleosynthesis (Boca Raton, FL: CRC/Taylor and Francis)

José, 1998, ApJ, 494, 680, 10.1086/305244

José J., & Shore S. 2008, in Classical Novae, 2nd edn., eds. Bode M. F., & Evans A. (Cambridge, UK: Cambridge Univ. Press), 121

Joy, 1954, ApJ, 120, 377, 10.1086/145928

Knigge, 2000, ApJ, 539, L49, 10.1086/312825

Kraft, 1964, ApJ, 139, 457, 10.1086/147776

Leibowitz, 1992, ApJ, 385, 49, 10.1086/186275

Lombardi, 2006, ApJ, 640, 441, 10.1086/499938

Maccarone, 2014, Space Sci. Rev., 183, 101, 10.1007/s11214-013-0032-4

Marietta, 2000, ApJS, 128, 615, 10.1086/313392

Marks, 1998, MNRAS, 301, 699, 10.1111/j.1365-8711.1998.02039.x

Marks, 1997, MNRAS, 290, 283, 10.1093/mnras/290.2.283

Monaghan, 1997, J. Comput. Phys., 136, 298, 10.1006/jcph.1997.5732

Price, 2007, Publ. Astron. Soc. Aust., 24, 159, 10.1071/AS07022

Puebla, 2007, AJ, 134, 1923, 10.1086/522112

Retter A. 2003, in Symbiotic Stars Probing Stellar Evolution, ASP Conf. Proc., 303. eds. Corradi R. L. M., Mikolajewska R., & Mahoney T. J., (San Francisco: ASP), 232

Retter, 1998, MNRAS, 293, 145, 10.1111/j.1365-8711.1998.01058.x

Retter, 1997, MNRAS, 286, 745, 10.1093/mnras/286.3.745

Rose, 1968, ApJ, 152, 245, 10.1086/149542

Sanford, 1949, ApJ, 109, 81, 10.1086/145106

Schatzman, 1949, Ann. Astrophys., 12, 281

Schatzman, 1951, Ann. Astrophys., 14, 294

Shafter, 2006, ApJ, 644, 1104, 10.1086/503764

Shakura, 1973, A&A, 24, 337

Shore, 2013, A&A, 553, A123, 10.1051/0004-6361/201321095

Shore, 1994, Nature, 369, 539, 10.1038/369539a0

Sills, 1997, ApJ, 484, L51, 10.1086/310772

Skillman, 1997, PASP, 109, 114, 10.1086/133866

Sparks, 1969, ApJ, 156, 569, 10.1086/149990

Springel, 2005, MNRAS, 364, 1105, 10.1111/j.1365-2966.2005.09655.x

Springel, 2002, MNRAS, 333, 649, 10.1046/j.1365-8711.2002.05445.x

Springel, 2001, New Astron., 6, 79, 10.1016/S1384-1076(01)00042-2

Starrfield S., Iliadis C., & Hix W. R. 2008, in Classical Novae, 2nd edn., eds. Bode M. F., & Evans A. (Cambridge, UK: Cambridge Univ. Press), 77

Starrfield, 2016, PASP, 128, 051001, 10.1088/1538-3873/128/963/051001

Tappert, 2013, MNRAS, 436, 2412, 10.1093/mnras/stt1747

Tatischeff, 2007, ApJ, 663, L101, 10.1086/520049

Warner B. 2003, Cataclysmic variable Stars (Cambridge, UK: Cambridge Univ. Press)

White S. D. M. 1996, in Cosmology and Large-Scale Structure, eds. Schaefer R., Silk J., Spiro M., & Zinn-Justin J. (Amsterdam: Elsevier), 349