Three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis and molecular docking of ATP-competitive triazine analogs of human mTOR inhibitors

Springer Science and Business Media LLC - Tập 21 - Trang 1207-1217 - 2011
Karunakar Tanneeru1, Bandi Madhusudhan Reddy1, Lalitha Guruprasad1
1School of Chemistry, University of Hyderabad, Hyderabad, India

Tóm tắt

The mTOR (mammalian target of rapamycin), a serine/threonine kinase has been identified as an important target for cancer. A 3D-QSAR analysis was carried out on 40 triazine based analogs of ATP-competitive mTOR kinase inhibitors. The study includes molecular field analysis (MFA) with G/PLS to predict the steric and electrostatic molecular field requirement for the activity of inhibitors. The QSAR model was developed using a training set of 33 compounds. The analyzed MFA model revealed a good fit, having r 2 value of 0.897 and r cv 2 value of 0.718. The predictive power of the model generated was validated using a test set comprising 7 molecules with r pred 2 value of 0.826. The analysis of the best MFA model provided insights into the structure–activity correlation of mTOR kinase inhibitors. Molecular docking studies revealed that all inhibitors bind in the ATP pocket of the kinase domain. Our QSAR model and molecular docking results corroborate with each other and propose directions for the design of new inhibitors with better activity toward mTOR kinase.

Tài liệu tham khảo

Abraham RT, Gibbons JJ (2007) The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res 13(11):3109–3114 Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Ruckel T, Schwarz MK, Shokat KM, Shaw JP, Willams L (2010) The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat Chem Bio 6(2):117–124 Carracedo A, Pandolfi PP (2008) The PTEN-PI3 K pathway: of feedbacks and cross-talks. Oncogene 27(41):5527–5541 Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3 K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074 Cerius2 Molecular modeling program package, molecular simulations Accelrys Inc.; San Diego, CA 92121-3752, USA Dancey JE (2006) MTOR and related pathways. Cancer Biol Ther 5(9):1065–1073 Deswal S, Roy N (2006) Quantitative structure activity relationship studies of aryl heterocycle- based thrombin inhibitors. Eur J Med Chem 41(11):1339–1346 Easton JB, Houghton PJ (2006) mTOR and cancer therapy. Oncogene 25(48):6436–6446 Fan Y, Shi LM, Kohn KW, Pommier Y, Weinstein JN (2001) Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm based studies. J Med Chem 44(20):3254–3263 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G., Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian Inc, Pittsburgh García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 421(1):29–42 Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11(8):353–361 Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22 Hawkins DM, Basak SC, Mills D (2003) Assessing model fit by cross-validation. J Chem Inf Comput Sci 43(2):579–586 Hopfinger AJ, Tokarsi JS, Charifson PS (1997) Practical applications of computer-aided drug design. Marcel Dekker, New York Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3(4):371–377 Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245(1):43–53 Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748 Menear KA, Gomez S, Malagu K, Bailey C, Blackburn K, Cockcroft XL, Ewen S, Fundo A, Le Gall A, Hermann G, Sebastian L, Sunose M, Presnot T, Torode E, Hickson I, Martin NM, Smith GC, Pike KG (2009) Identification and optimisation of novel and selective small molecular weight kinase inhibitors of mTOR. Bioorg Med Chem Lett 19(20):5898–5901 Molecular Simulations. (1997) Cerius2 Tutorial, version 3.5. Molecular Simulations Inc., San Diego Nowak P, Cole DC, Brooijmans N, Bursavich MG, Curran KJ, Ellingboe JW, Gibbons JJ, Hollander I, Hu Y, Kaplan J, Malwitz DJ, Toral-Barza L, Verheijen JC, Zask A, Zhang WG, Yu K (2009) Discovery of potent and selective inhibitors of the mammalian target of rapamycin (mTOR) kinase. J Med Chem 52(22):7081–7089 Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405(3):513–522 QSAR (1993) Hansch analysis and related approaches. In: Mannhold R, Kroogsgrad-Larsen P, Timmerman H (eds) Methods and principles in medicinal chemistry, vol 1. VCH, Weinheim Richard DJ, Verheijen JC, Yu K, Zask A (2010) Triazines incorporating (R)-3-methylmorpholine are potent inhibitors of the mammalian target of rapamycin (mTOR) with selectivity over PI3 Kα. Bioorg and Med Chem Lett 20(8):2654–2657 Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866 Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313 Verheijen JC, Richard DJ, Curran K, Kaplan J, Yu K, Zask A (2010) 2-Arylureidophenyl-4-(3- oxa-8-azabicyclo[3.2.1]octan-8-yl)triazines as highly potent and selective ATP competitive mTOR inhibitors: Optimization of human microsomal stability. Bioorg and Med Chem Lett 20(8):2648–2653 Wullschleger S, Loewith R, Hall MN (2006) TOR Signaling in growth and metabolism. Cell 124(3):471–484 Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, Mansour TS, Gibbons JJ, Abraham RT, Nowak P, Zask A (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 69(15):6232–6240 Yuan TL, Cantley LC (2008) PI3 K pathway alterations in cancer: Variations on a theme under- standing the oncogenic mechanisms of PI3 K pathway alterations in cancer. Oncogene 27(41):5497–5510 Zask A, Verheijen JC, Curran K, Kaplan J, Richard DJ, Nowak P, Malwitz DJ, Brooijmans N, Bard J, Svenson K, Lucas J, Toral-Barza L, Zhang WG, Hollander I, Gibbons JJ, Abraham RT, Ayral-Kaloustian S, Mansour TS, Yu K (2009) ATP-competitive inhibitors of the mammalian target of rapamycin: design and synthesis of highly potent and selective pyrazolopyrimidines. J Med Chem 52(16):5013–5016