Three-dimensional point localisation in low-dose X-ray images using stereo-photogrammetry

Medical & Biological Engineering & Computing - Tập 42 - Trang 37-43 - 2004
T. S. Douglas1, C. L. Vaughan1, S. M. Wynne1
1MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa

Tóm tắt

A stereo-photogrammetric method for three-dimensional reconstruction of points in low-dose digital X-ray images obtained using a scanner with similar imaging geometry to that of computed tomography scan projection radiography, was analysed. A calibration frame containing 25 radio-opaque markers with known three-dimensional locations was scanned, and the accuracy of reconstruction of the marker positions under varying control point configurations and separation angles was assessed. Errors of less than 1 mm were obtained when nine test points were reconstructed, with 16, 11 and 7 control points at a 90δ separation angle, and with 16 and 11 control points at 75° and 60° separation angles. The optimum reconstruction, with a resultant error of 0.68mm, was found to occur at a separation angle of 90°, with the largest number of control points (16) used to calculated the parameters of the transformation. Extrapolation in the scanning direction beyond the space defined by the control points gave errors of less than 2mm. This method should be suitable for three-dimensional point reconstruction in applications such as cephalometry, brachytherapy planning and assessment of spinal shape.

Tài liệu tham khảo

Abdel-Aziz, Y. L., andKarara, H. M. (1971): ‘Direct linear transformation from comparator coordinates into object space coordinates in close range photogrammetry’. Proc. ASP/UI Symp. Close-range Photogrammetry, American Society of Photogrammetry, Falls Church, pp. 1–18 Adams, L. P. (1981): ‘X-ray stereo photogrammetry locating the precise, three dimensional position of image points’,Med. Biol. Eng. Comput.,19, pp. 569–578 Alberius, P., Malmberg, M., Persson, S., andSelvik, G. (1990): ‘Variability of measurements of cranial growth in the rabbit’.Am. J. Anat.,188, pp. 393–400 Baumrind, S., Moffitt, F. H., andCurry, S. (1983): ‘The geometry of three-dimensional measurement from coplanar x-ray images’,Am. J. Orthodont.,84, pp. 313–322 Benameur, S., Mognotte, M., Parent, S., Labelle, H., Skalli, W., andDe Guise, J. (2003): ‘3D/2D registration and segmentation of scoliotic vertebrae using statistical models’,Comput. Med. Imag. Graph.,27, pp. 321–327 Beningfield, S. J., Potgieter, J. H., Bautz, P., Shackleton, M., Hering, E., De Jager, G., Bowie, G., Marshall, M., Cox, G., Pagliari, G., andCoetzee, N. (1999): ‘Evaluation of a new type of direct digital radiography machine’,S. Afr. Med. J.,89, pp. 182–1188 Beningfield, S. J., Potgieter, H., Nicol, A., Van As, S., Bowie, G., Hering, E., Lätti, E. (2003): ‘Report on a new type of trauma fullbody digital X-ray machine’,Emerg. Radiol.,10, pp. 23–29 Bice, W. S., Dubois, D. F., Prete, J. J., andPrestidge, B. R. (1999): ‘Source localization from axial image sets by iterative relaxation of the nearest neighbour criterion’,Med. Phys.,26, pp. 1919–1924 Broadbent, B. H. (1931): ‘A new x-ray technique and its application to orthodonta’,Angle Orthodontist, pp. 1–45 Cai, J., Chu, J. C. H., Saxena, V. A., andLanzi, L. H. (1997): ‘A method for more efficient source localization of interstitial implants with biplane radiographs’,Med. Phys.,24, pp. 1229–1234 Challis, J. H., andKerwin, D. G. (1992): ‘Accuracy assessment and control point configuration when using the DLT for photogrammetry’,J. Biomech.,25, pp. 1053–1058 Choo, A. M. T., andOxland, T. R. (2003): ‘Improved RSA accuracy with DLT and balanced calibration marker distributions with an assessment of initial-calibration’,J. Biomech.,36, pp. 259–264 Djerf, K., Edholm, P., andHedbrant, J. A. (1987): ‘Simplified roentgen stereophotogrammetric method. Analysis of small movements between the prosthetic stem and the femur after total hip replacement’,Acta Radiol.,28, pp. 603–606 Douglas, T. S., Meintjes, E. M., Vaughan, C. L., andViljoen, D. (2003): ‘The role of depth in eye distance measurements: comparison of single and stereo photogrammetry’,Am. J. Human Biol.,14, pp. 573–578 Gall, K. P., Verhey, L. J., andWagner, M. (1993): ‘Computer-assisted positioning of radiotherapy patients using implanted radiopaque fiducials’,Med. Phys.,20, 1153–1159 Gussekloo, S. W. S., Janssen, B. A. M., Vosselman, M. G., andBout, R. G. (2000): ‘A single camera roentgen stereophotogrammetry method for static displacement analysis’,J. Biomech.,33, pp. 759–763 Kusnoto, B., Evans, C. A., Begole, E. A., andde Rijk, W. (1999): ‘Assessment of 3-dimensional computer-generated cephalometric measurements’,Am. J. Orthodont. Dentofac. Orthopaed.,116, pp. 390–399 Lam, K. L., andTen Haken, R. K. (1991): ‘Improvement of precision in spatial localization of radio-opaque markers using the two-film technique’,Med. Phys.,18, pp. 1126–1131 Li, S., Chen, G. T. Y., Pelizzari, C. A., Reft, C., Roeske, J. C., andLu, Y. (1996): ‘A new source localization algorithm with no requirement of one-to-one source correspondence between biplane radiographs’,Med. Phys.,23, pp. 921–927 Martel, M. K., andNarayana, V. (1998): ‘Brachytherapy for the next century: use of image-based treatment planning’,Radiation Research,150, pp. S178-S188 Meintjes, E. M., Douglas, T. S., Martinez, F., Vaughan, C. L., Adams, L. P., Stekhoven, A., andViljoen, D. (2002): ‘A stereophotogrammetric method to measure the facial dysmorphology of children in the diagnosis of Fetal Alcohol Syndrome’,Med. Eng. Phys.,24, pp. 683–689 Papadopoulos, M. A., Christou, P. K., Athanasiou, A. E., Boettcher, P., Zeilhofer, H. F., Sader, R., andPapadopulos, N. A. (2002): ‘Three-dimensional craniofacial reconstruction imaging’,Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.,93, pp. 382–393 Petit, Y., Dansereau, J., Labelle, H., andDe Guise, J. A. (1998): ‘Estimation of 3D location and orientation of human vertebral facet joints from standing digital radiographs’,Med. Biol. Eng. Comput.,36, pp. 389–394 Østgaard, S. E., Gottlieb, L., Toksvig-Larsen, S., Lebech, A., Talbot, A., andLund, B. (1997): ‘Roentgen stereophotogrammetric analysis using computer-based image-analysis’,J. Biomech.,30, pp. 993–995 Ras, F., Habets, L. L., van Ginkel, F. C., andPrahl-Anderson, B. (1996): ‘Quantification of facial morphology uing stereo-photogrammetry—demonstration of a new concept’,J. Dentistry,24, pp. 369–374 Selvik, G., Alberius, P., andAronson, A. S. (1983): ‘A roentgen-stereophotogrammetric system. Construction, calibration and technical accuracy’,Acta-Radiol. (Diagnosis),24, pp. 343–352 Selvik, G. (1989): ‘Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system’,Acta Orthopaed. Scand. Suppl.,232, pp. 1–51 Valstar, E. R., De Jong, F. W., Vrooman, H. A., Rozing, P. M., andReiber, J. H. C. (2001): ‘Model-based Roentgen stereophotogrammetry of orthopaedic implants’,J. Biomech.,34, pp. 715–722 Valstar, E. R., Nelissen, R. G. H. H., Reiber, J. H. C., andRozing, P. M. (2002): ‘The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants’,ISPRS J. Photogramm. Remote Sens.,56, pp. 376–389 Van Geems, B. A., Adams, L. P., andHough, J. (1995): ‘The use of a two dimensional projective transformation to solve for the parameters for the anterior-posterior and lateral surviews of a CT scan’,Int. Arch. Photogrammetry Remote Sens.,30, pp. 366–371 Van Geems, B. A. (1996): ‘The use of multiple surviews of a computed tomography scanner to determine the 3D coordinates of external cranial markers’,Int. Arch. Photogramm. Remote Sens.,31, pp. 576–580 Vrooman, H. A., Valstar, E. R., Brand, G., Admiraal, D. R., Rozing, P. M., andReiber, J. H. C. (1998): ‘Fast and accurate automated measurements in digitized stereophotogrammetric radiographs’,J. Biomech.,31, pp. 491–498 Wood, G. A., andMarshall, R. N. (1986): ‘The accuracy of DLT extrapolation in three-dimensional film analysis’,J. Biomech.,19, pp. 781–785 Yuan, X., andRyd, L. (2000): ‘Accuracy analysis for RSA: a computer simulation study on 3D marker reconstruction’,J. Biomech.,33, pp. 493–498