Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling

Journal of Molecular Biology - Tập 221 Số 1 - Trang 293-308 - 1991
Christine Brunel1, Pascale Romby2, Éric Westhof2, Chantal Ehresmann2, Bernard Ehresmann2
1Institut de Biologie Moléculaire et Cellulaire de CNRS, Strasbourg France
2Institut de Biologie Moléculaire et Cellulaire de CNRS 15 rue R. Descartes, 67084 Strasbourg Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andersen, 1984, 5 S rRNA structure and interaction with transcription factor TFIIIA. A: ribonucleases probe of the structure of 5 S rRNA from Xenopus laevis oocytes, Biochemistry, 23, 5752, 10.1021/bi00319a013

Baudin, 1991, Involvement of “hinge” nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA, J. Mol. Biol., 218, 69, 10.1016/0022-2836(91)90874-6

Böhm, 1981, Structural analysis of the A and B conformers of Escherichia coli 5 S rRNA by infrared spectroscopy, FEBS Letters, 132, 357, 10.1016/0014-5793(81)81197-0

Brosius, 1981, Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli, Plasmid, 6, 112, 10.1016/0147-619X(81)90058-5

Brunel, 1990, Effect of mutations in domain 2 on the structural organization of oocyte 5 S rRNA from Xenopus laevis, J. Mol. Biol., 215, 103, 10.1016/S0022-2836(05)80099-3

Cheong, 1990, Solution structure of an unusually stable RNA hairpin, 5′GGAC(UUCG)GUCC, Nature (London), 346, 680, 10.1038/346680a0

Christensen, 1985, Alternative conformers of 5 S rRNA and their biological relevance, Biochemistry, 24, 2284, 10.1021/bi00330a024

Christiansen, 1985, Xenopus transcription factor TFIIIA binds primarily at junctions between double helical stems and internal loops in oocyte 5 S rRNA, EMBO J., 4, 1019, 10.1002/j.1460-2075.1985.tb03733.x

Christiansen, 1987, Does unpaired adenosine 66 from helix II of E. coli bind to protein L18?, EMBO J., 2, 1309

De Wachter, 1984, Equilibria in 5 S rRNA secondary structure: bulges and interior loops in 5 S rRNA secondary structure may serve as articulations for a flexible molecule, Eur. J. Biochem., 143, 175, 10.1111/j.1432-1033.1984.tb08356.x

Dock-Brégeon, 1989, Solution structure of a tRNA with a large variable region: yeast tRNASer, J. Mol. Biol., 207, 707, 10.1016/0022-2836(89)90578-0

Douthwaite, 1982, Binding sites of ribosomal proteins on prokaryotic 5 S ribonucleic acids: a study with ribonucleases, Biochemistry, 21, 2313, 10.1021/bi00539a007

Egebjerg, 1989, Protein L18 binds primarily at the junctions of helix II and internal loops A and B in Escherichia coli 5 S rRNA, J. Mol. Biol., 206, 651, 10.1016/0022-2836(89)90573-1

England, 1978, 3′ terminal labeling of RNA with T4 RNA ligase, Nature (London), 275, 560, 10.1038/275560a0

Farber, 1981, A slow tritium exchange study of the solution structure of Escherichia coli 5 S rRNA, J. Mol. Biol., 146, 241, 10.1016/0022-2836(81)90434-4

Fox, 1975, 5 S rRNA secondary structure, Nature (London), 256, 505, 10.1038/256505a0

Fox, 1982, Acquisition of native conformation of 5 S rRNA from E. coli. Hydrodynamic and spectroscopic studies on the unfolding and refolding of ribonucleic acid, J. Biol. Chem., 254, 10139, 10.1016/S0021-9258(19)86684-X

Garrett, 1984, Mechanisms of protein-RNA recognition and assembly in ribosomes, vol. 19, 331

Gewirth, 1987, Secondary structure of 5 S RNA: NMR experiments on RNA molecules partially labeled with nitrogen 15, Biochemistry, 26, 5213, 10.1021/bi00390a047

Göringer, 1986, Does 5 S rRNA from E. coli have a pseudoknotted structure?, Nucl. Acids Res., 14, 7473, 10.1093/nar/14.18.7473

Gornicki, 1989, Use of lead(II) to probe the structure of large RNAs. Conformation of the 3′ terminal domain of E. coli 16 S rRNA and its involvement in building the tRNA binding sites, J. Biomol. Struct. Dynam., 5, 971, 10.1080/07391102.1989.10506525

Hancock, 1982, A structural model of 5 S rRNA from E. coli based on intramolecular cross-linking evidence, Nucl. Acids Res., 10, 1257, 10.1093/nar/10.4.1257

Herr, 1979, Protection of specific sites in 23 S and 5 S rRNA from chemical modification by association of 30 S and 50 S ribosomes, J. Mol. Biol., 130, 421, 10.1016/0022-2836(79)90432-7

Kao, 1980, A proton-coupled conformation switch of Escherichia coli 5 S rRNA, Nucl. Acids Res., 77, 3360

Kim, 1990, Dynamic structure of bacterial 5 S rRNA: helices II and III of B. megaterium 5 S rRNA, Biochem. Biophys. Res. Commun., 169, 1068, 10.1016/0006-291X(90)92003-I

Kime, 1982, NMR evidence for the existence of two native conformations of 5 S rRNA, Nucl. Acids Res., 10, 4973, 10.1093/nar/10.16.4973

Kime, 1983, Nuclear Overhauser experiments at 500 MHz on the downfield proton spectra of 5 S rRNA and its complex with ribosomal protein L25, Biochemistry, 22, 2622, 10.1021/bi00280a005

Kime, 1984, Assignment of resonances in the downfield proton spectrum of Escherichia coli 5 S rRNA and its nucleo-protein complexes using components of a ribonuclease resistant fragment, Biochemistry, 23, 3559, 10.1021/bi00310a027

Labuda, 1985, Co-operativity in low affinity Mg2+ binding to tRNA, J. Biol. Chem., 260, 1103, 10.1016/S0021-9258(20)71213-5

Leal de Stevenson, 1991, Structural studies on site-directed mutants of domain 3 of X. laevis 5 S rRNA, J. Mol. Biol., 219, 243, 10.1016/0022-2836(91)90565-N

Leontis, 1986, NMR evidence for dynamic secondary structure in helices II and III of the 5 S rRNA of E. coli, Biochemistry, 25, 3916, 10.1021/bi00361a027

Leontis, 1986, Effect of magnesium ion on the structure of the 5 S rRNA from E. coli. An imino proton magnetic resonance study of the helix I, IV and V regions of the molecule, Biochemistry, 25, 7386, 10.1021/bi00371a021

Müller, 1986, Comparison of the structure of 5 S rRNA from E. coli and from rat liver using X-ray scattering and dynamic light scattering, Eur. Biophys. J., 13, 301, 10.1007/BF00254212

Österberg, 1976, Molecular model for 5 S rRNA: a small angle X-ray scattering study of native, denatured and aggrevated 5 S rRNA from E. coli ribosome, Eur. J. Biochem., 68, 481, 10.1111/j.1432-1033.1976.tb10835.x

Peattie, 1980, Chemical probes for higher-order structure in RNA, 77, 4679

Pieler, 1982, Three-dimensional structural model of eubacterial 5 S rRNA that has functional implications, 79, 4599

Puglisi, 1990, Solution conformation of an RNA hairpin loop, Biochemistry, 29, 4215, 10.1021/bi00469a026

Romaniuk, 1988, A comparison of the solution structures and conformational properties of the somatic and oocyte 5 S rRNA of Xenopus laevis, Nucl. Acids Res., 16, 2295, 10.1093/nar/16.5.2295

Romby, 1988, Higher-order structure of chloroplastic 5 S rRNA from spinach, Biochemistry, 27, 4712, 10.1021/bi00413a021

Romby, 1990, Ribosomal 5 S rRNA from X. laevis oocytes: conformation and interaction with transcription factor IIIA, Biochimie, 72, 437, 10.1016/0300-9084(90)90068-R

SantaLucia, 1990, Effects of GA mismatches on the structure and thermodynamics of RNA internal loops, Biochemistry, 29, 8813, 10.1021/bi00489a044

Shinagawa, 1979, Inhibition of a nuclease contaminant in the commercial preparation of E. coli alkaline phosphatase, Anal. Biochem., 95, 458, 10.1016/0003-2697(79)90756-5

Silberklang, 1977, The use of P1 nuclease in sequence analysis of end-group labeled RNA, Nucl. Acids Res., 4, 4091, 10.1093/nar/4.12.4091

Silberklang, 1983, Chemical reactivity of E. coli 5 S rRNA in situ in the 50 S ribosomal subunit, Nucl. Acids Res., 11, 605, 10.1093/nar/11.3.605

Stahl, 1984, An unusual 5 S rRNA from Sulfolobus acido caldarius and its implications for a general 5 S rRNA structure, J. Biol. Chem., 259, 11448, 10.1016/S0021-9258(18)90881-1

Toukifimpa, 1989, Characterization and footprint of two 5 S rRNA binding proteins from spinach chloroplast ribosomes, Biochemistry, 28, 5840, 10.1021/bi00440a021

Trakhanov, 1987, Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus, FEBS Letters, 220, 319, 10.1016/0014-5793(87)80838-4

Tuerk, 1988, CUUCGG hairpins: extraordinary stable RNA secondary structures associated with various biochemical processes, 85, 1364

Varani, 1989, Conformation and dynamics of an RNA internal loop, Biochemistry, 28, 7760, 10.1021/bi00445a036

Webster, 1990, Crystal structure and sequence-dependent conformation of the A-G mispaired oligonucleotide d(CGCAAGCTGGCG), 87, 6693

Westhof, 1985, Crystallographic refinement of yeast aspartic acid transfer RNA, J. Mol. Biol., 184, 119, 10.1016/0022-2836(85)90048-8

Westhof, 1989, Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs, J. Mol. Biol., 207, 417, 10.1016/0022-2836(89)90264-7

Westhof, 1990, Computer-aided structural biochemistry of ribonucleic acids, 399

Wolters, 1988, Collection of published 5 S, 5·8 S and 4·5 S ribosomal RNA sequences, Nucl. Acids Res., 16, r1, 10.1093/nar/16.suppl.r1

Wu, 1990, 500-Mhz proton NMR evidence for two solution structures of the common arm base-paired segment of wheat germ 5 S rRNA, Biochemistry, 29, 1722, 10.1021/bi00459a009

Yonath, 1989, Crystallography and image reconstructions of ribosomes, 134

Zhang, 1989, An NMR study in the helix V-loop E region of the 5 S RNA from E. coli, Biochemistry, 28, 4607, 10.1021/bi00437a015

Zhang, 1989, A study of the conformation of 5 S RNA by 31P NMR, Nucl. Acids Res., 17, 7295, 10.1093/nar/17.18.7295