Three-dimensional CFD study of a β-type Stirling Engine

Thermal Science and Engineering Progress - Tập 11 - Trang 302-316 - 2019
E.D. Rogdakis1, Panagiotis Bitsikas1, George Dogkas1, Γεώργιος Αντωνάκος1
1Laboratory of Applied Thermodynamics, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens (NTUA), Heroon Polytechniou 9, Zografou Campus 15780, Athens, Greece

Tóm tắt

Từ khóa


Tài liệu tham khảo

Urieli, 1983

Guzzetti, 2013

Sauer, 2016, Numerical model for Stirling cycle machines including a differential simulation of the appendix gap, Appl. Therm. Eng., 111, 819, 10.1016/j.applthermaleng.2016.09.176

Mahkamov, 2005, An axisymmetric computational fluid dynamics approach to the analysis of the working process of a solar Stirling engine, J. Sol. Energy Eng., 128, 45, 10.1115/1.2148979

Alexakis, 2014, A 2-dimensional computational fluid dynamics approach to the analysis of the working progress of a Wankel-type Stirling machine

Salazar, 2014, A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-ype Stirling engine, Energy Convers. Manage., 88, 177, 10.1016/j.enconman.2014.08.040

Chen, 2014, A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low-temperature-differential γ-type Stirling engine, Int. J. Heat Mass Transfer, 76, 145, 10.1016/j.ijheatmasstransfer.2014.03.055

Ben-Mansour, 2017, CFD analysis of radiation impact on stirling engine performance, Energy Convers. Manage., 152, 354, 10.1016/j.enconman.2017.09.056

Chen, 2015, A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine, Energy Convers. Manage., 106, 635, 10.1016/j.enconman.2015.10.007

Cheng, 2017, Numerical simulation of thermal and flow fields inside a 1-kW beta-type Stirling engine, Appl. Therm. Eng., 121, 554, 10.1016/j.applthermaleng.2017.04.105

Almajri, 2017, Modelling and parametric study of an efficient alpha type stirling engine performance based on 3D CFD analysis, Energy Convers. Manage., 145, 93, 10.1016/j.enconman.2017.04.073

Xiao, 2017, Design optimization with computational fluid dynamics analysis of β-type Stirling engine, Appl. Therm. Eng., 113, 87, 10.1016/j.applthermaleng.2016.10.063

Dyson, 2005

Martini, 1983

Tew, 1978

ANSYS, 2013

ANSYS Fluent Theory Guide, Release 15.0 ed., ANSYS, Canonsburg, 2013.

Barreno, 2015, Numerical correlation for the pressure drop in Stirling engine heat exchangers, Int. J. Therm. Sci., 97, 68, 10.1016/j.ijthermalsci.2015.06.014

Versteeg, 2016

Costa, 2013, Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator, Energy Convers. Manage., 67, 57, 10.1016/j.enconman.2012.10.014

Costa, 2015, The thermal non-equilibrium porous media modelling for CFD of woven wire matrix of a Stirling regenerator, Energy Convers. Manage., 89, 473, 10.1016/j.enconman.2014.10.019

Rogdakis, 2017, Study of gas flow through a Stirling Engine regenerator

Rogdakis, 2015, Influence of a regenerator on stirling engine performance, J. Energy Eng., 10

Ahmed, 2019, Numerical modeling and optimization of beta-type Stirling Engine, Appl. Therm. Eng., 149, 385, 10.1016/j.applthermaleng.2018.12.003