Three-Dimensional Quadrics in Conformal Geometric Algebras and Their Versor Transformations

Advances in Applied Clifford Algebras - Tập 29 - Trang 1-16 - 2019
Eckhard Hitzer1
1International Christian University, Mitaka-shi, Japan

Tóm tắt

This work explains how three dimensional quadrics can be defined by the outer products of conformal geometric algebra points in higher dimensions. These multivector expressions code all types of quadrics in arbitrary scale, location and orientation. Furthermore, a newly modified (compared to Breuils et al. in Adv Appl Clifford Algebras 28(35):1–16, 2018. https://doi.org/10.1007/s00006-018-0851-1 ) approach now allows not only the use of the standard intersection operations, but also of versor operators (scaling, rotation, translation). The new algebraic form of the theory will be explained in detail.

Tài liệu tham khảo

Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of \(\mathbb{R}^{9,6}\). Adv. Appl. Clifford Algebras 28(35), 1–16 (2018). https://doi.org/10.1007/s00006-018-0851-1 Breuils, S., Nozick, V., Fuchs, L.: Garamon: Geometric algebra library generator. In: Xambo-Descampes, S., et al. (eds.) Early Proceedings of AGACSE 2018, July 23–27, 2018, pp. 97–106 pp. 97–106, Campinas, Sao Paulo, Brazil (2018). https://mat-web.upc.edu/people/sebastia.xambo/A18/EP.pdf Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry. Morgan Kaufmann, Burlington (2007) Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27(3), 2175–2199 (2017). https://doi.org/10.1007/s00006-017-0784-0 El Mir, G., Saint-Jean, C., Berthier, M.: Conformal geometry for viewpoint change representation. Adv. Appl. Clifford Algebras 24(2), 443–463 (2014). https://doi.org/10.1007/s00006-013-0431-3 Hitzer, E.: The creative peace license. https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/. Accessed 25 Apr 2019 Hitzer, E., Sangwine, S.J.: Foundations of conic conformal geometric algebra and simplified versors for rotation, translation and scaling (to be published) Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. Appl. Clifford Algebras 19(2), 339–364 (2009) Hrdina, J., Návrat, A., Vasik, P.: Geometric algebra for conics. Adv. Appl. Clifford Algebras 28(66), 1–21 (2018). https://doi.org/10.1007/s00006-018-0879-2 Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008) Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Heidelberg (2008) Sangwine, S.J., Hitzer, E.: Clifford multivector toolbox (for MATLAB). Adv. Appl. Clifford Algebras 27(1), 539–558 (2017). https://doi.org/10.1007/s00006-016-0666-x. Preprint: http://repository.essex.ac.uk/16434/1/author_final.pdf