Three-Dimensional Bioprinting Strategies for Tissue Engineering

Cold Spring Harbor Perspectives in Medicine - Tập 8 Số 2 - Trang a025718 - 2018
Yu Shrike Zhang1,2,3, Rahmi Öklü1,4, Mehmet R. Dokmeci1,2,3, Ali Khademhosseini1,2,3,5,6
11Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
22Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
33Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115
44Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, Arizona 85259
55Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
66Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1089/ten.teb.2007.0435

2014, Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution, Biofabrication, 6, 045001, 10.1088/1758-5082/6/4/045001

Allard TT , Sitchon M , Sawatzky R , Hoppa R . 2005. Use of hand-held laser scanning and 3D printing for creation of a museum exhibit. In Proceedings of the 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage: Short and Project Papers (ed. Mudge M , Ryan N , Scopigno R , ), pp. 97–101.

2016, Multilayer scaffolds in orthopaedic tissue engineering, Knee Surg Sports Traumatol Arthrosc, 24, 2365, 10.1007/s00167-014-3453-z

2010, Directed 3D cell alignment and elongation in microengineered hydrogels, Biomaterials, 31, 6941, 10.1016/j.biomaterials.2010.05.056

2012, Building vascular networks, Sci Transl Med, 4, 160ps123

10.1023/B:BMMD.0000031751.67267.9f

10.1039/c4lc00030g

10.1126/sciadv.1500655

10.1016/j.jconrel.2014.05.004

2015, A liver-on-a-chip platform with bioprinted hepatic spheroids, Biofabrication, 8, 014101

2011, Hyaluronic acid hydrogels for biomedical applications, Adv Mater, 23, H41, 10.1002/adma.201003963

10.1203/PDR.0b013e31816c5bc3

2015, Freeform inkjet printing of cellular structures with bifurcations, Biotech Bioeng, 112, 1047, 10.1002/bit.25501

10.1089/ten.2006.12.1325

2015, Microfluidic bioprinting of heterogeneous 3D tissue constructs using low viscosity bioink, Adv Mater, 28, 677

10.2174/187221112800672949

10.1016/S0142-9612(03)00340-5

10.1073/pnas.0801866105

10.1002/bit.23102

10.1088/1758-5090/7/4/044102

10.1038/nbt0794-689

2009, Advanced material strategies for tissue engineering scaffolds, Adv Mater, 21, 3410, 10.1002/adma.200900303

10.1002/jmri.1139

10.1002/bip.20871

2002, In vitro systems for tissue engineering, Ann NY Acad Sci, 961, 10, 10.1111/j.1749-6632.2002.tb03041.x

10.1016/j.biomaterials.2010.05.055

2013, High-throughput printing via microvascular multinozzle arrays, Adv Mater, 25, 96, 10.1002/adma.201203321

2015, Microfluidic printheads for multimaterial 3D printing of viscoelastic inks, Adv Mater, 27, 3279, 10.1002/adma.201500222

2015, Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels, Adv Mater, 27, 5075, 10.1002/adma.201501234

10.1126/sciadv.1500758

10.1016/j.addr.2012.09.010

10.1126/science.1957169

Hull CW . 1986. Apparatus for production of three-dimensional objects by stereolithography. U.S. patent 4575330A.

10.1163/156856201744489

2010, Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel, Biofabrication, 2, 014108, 10.1088/1758-5082/2/1/014108

10.1016/j.jconrel.2005.03.023

10.1038/nmat3586

10.1016/j.addr.2011.01.009

2014, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs, Adv Mater, 26, 3124, 10.1002/adma.201305506

2014, Creating perfused functional vascular channels using 3D bio-printing technology, Biomaterials, 35, 8092, 10.1016/j.biomaterials.2014.05.083

2015, Advancing tissue engineering: A tale of nano, micro and macro scale integration, Small, 12, 2130

10.1021/nl901582f

2012, Electrospun nanofibers for regenerative medicine, Adv Healthcare Mater, 1, 10, 10.1002/adhm.201100021

2014, Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis, ACS Appl Mater Interfaces, 6, 2842, 10.1021/am405418g

10.1146/annurev-bioeng-071910-124656

10.1007/s10439-010-0046-y

10.1038/nbt1055

10.1073/pnas.0737381100

2004, Scaffolds for tissue fabrication, Mater Today, 7, 30, 10.1016/S1369-7021(04)00233-0

2013, 25th anniversary article: Engineering hydrogels for biofabrication, Adv Mater, 25, 5011, 10.1002/adma.201302042

10.1108/13552540710776197

1994, Surgical planning using three-dimensional imaging and computer modeling, Otolaryngol Clin North Am, 27, 875, 10.1016/S0030-6665(20)30614-9

10.1073/pnas.1221602110

10.1001/jama.2014.9542

10.1038/nmat3357

10.1002/bies.201200062

10.1038/nbt.2958

2012, Vascularized bone tissue engineering: Approaches for potential improvement, Tissue Eng B, 18, 363, 10.1089/ten.teb.2012.0012

10.1039/b814285h

10.1016/j.biomaterials.2010.03.064

10.1038/nrm3049

10.1016/S0098-2997(02)00008-0

10.1073/pnas.1509224112

10.1073/pnas.1101321108

2010, Design of three-dimensional biomimetic scaffolds, J Biomed Mater Res A, 94A, 1321, 10.1002/jbm.a.32834

10.1098/rsfs.2011.0123

2014, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink, Nat Commun, 5, 3935, 10.1038/ncomms4935

2014, Organs-on-a-chip: A new tool for drug discovery, Expert Opin Drug Discov, 9, 335, 10.1517/17460441.2014.886562

10.1038/nmat3922

2013, DNA-directed self-assembly of shape-controlled hydrogels, Nat Commun, 4, 2275, 10.1038/ncomms3275

10.1038/nbt1101-1029

10.1038/nature10761

10.1016/S0142-9612(98)00107-0

10.1016/j.coph.2013.06.005

10.3109/03008207.2011.650804

10.1089/ten.2006.12.3497

2015, Bioprinting of 3D hydrogels, Lab Chip, 15, 3111, 10.1039/C5LC90069G

10.1038/nchem.1313

10.1038/nmeth.3553

2015, Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems, Adv Drug Deliv Rev, 94, 116, 10.1016/j.addr.2015.03.012

2009, Multiscale photoacoustic microscopy and computed tomography, Nat Photon, 3, 503, 10.1038/nphoton.2009.157

10.1126/science.1216210

10.1038/nbt0602-602

10.1002/jor.20475

10.1039/c0nr00192a

10.1016/j.biomaterials.2004.04.011

10.1016/j.biomaterials.2012.09.035

10.1016/j.stem.2012.05.005

2015, Seeking the right context for evaluating nanomedicine: From tissue models in petri dishes to microfluidic organs-on-a-chip, Nanomedicine, 10, 685, 10.2217/nnm.15.18

2015, Multiple facets for extracellular matrix mimicking in regenerative medicine, Nanomedicine, 10, 689, 10.2217/nnm.15.10

2013, Inverse opal scaffolds for applications in regenerative medicine, Soft Matter, 9, 9747, 10.1039/c3sm52063c

2015, From cardiac tissue engineering to heart-on-a-chip: Beating challenges, Biomed Mater, 10, 034006, 10.1088/1748-6041/10/3/034006