Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses

Nature Reviews Neuroscience - Tập 9 Số 10 - Trang 768-778 - 2008
Lars Bertram1, Rudolph E. Tanzi1
1Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, 114 16th Street, Charlestown, 02129, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

Bergem, A. L., Engedal, K. & Kringlen, E. The role of heredity in late-onset Alzheimer disease and vascular dementia. A twin study. Arch. Gen. Psychiatry 54, 264–270 (1997).

Daw, E. W. et al. The number of trait loci in late-onset Alzheimer disease. Am. J. Hum. Genet. 66, 196–204 (2000).

Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63, 168–174 (2006). This is the most recent and the most extensive AD twin study, and provides probably the most realistic heritability estimates.

Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

Saunders, A. M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).

Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genet. 39, 17–23 (2007). This paper describes the first complex-disease meta-analysis database and the methodology behind the AlzGene approach.

Sloane, P. D. et al. The public health impact of Alzheimer's disease, 2000–2050: potential implication of treatment advances. Annu. Rev. Public Health 23, 213–231 (2002).

Brookmeyer, R., Gray, S. & Kawas, C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88, 1337–1342 (1998).

Grupe, A. et al. Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Hum. Mol. Genet. 16, 865–873 (2007). This was the first genome-wide AD association study. It focused on polymorphisms in or near coding regions.

Coon, K. D. et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease. J. Clin. Psychiatry 68, 613–618 (2007).

Li, H. et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch. Neurol. 65, 45–53 (2008). This high-density genome-wide association study identified several potential new AD loci, including several that had previously been implicated by meta-analyses.

Reiman, E. M. et al. GAB2 alleles modify Alzheimer's risk in APOE ε4 carriers. Neuron 54, 713–720 (2007). This was the first high-density genome-wide AD association study. It implicated GAB2 as a potential new AD locus.

Henschke, P. J., Bell, D. A. & Cape, R. D. Alzheimer's disease and HLA. Tissue Antigens 12, 132–135 (1978).

Sayed-Tabatabaei, F. A., Oostra, B. A., Isaacs, A., van Duijn, C. M. & Witteman, J. C. ACE polymorphisms. Circ. Res. 98, 1123–1133 (2006).

Keavney, B. et al. Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum. Mol. Genet. 7, 1745–1751 (1998).

Hu, J., Igarashi, A., Kamata, M. & Nakagawa, H. Angiotensin-converting enzyme degrades Alzheimer amyloidβ-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 276, 47863–47868 (2001).

Hemming, M. L. & Selkoe, D. J. Amyloidβ-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 280, 37644–37650 (2005).

Eckman, E. A. et al. Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem. 281, 30471–30478 (2006).

Hemming, M. L., Selkoe, D. J. & Farris, W. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol. Dis. 26, 273–281 (2007).

Takeda, S., Sato, N., Ogihara, T. & Morishita, R. The renin-angiotensin system, hypertension and cognitive dysfunction in Alzheimer's disease: new therapeutic potential. Front. Biosci. 13, 2253–2265 (2008).

Ohrui, T. et al. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology 63, 1324–1325 (2004).

Savaskan, E. et al. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol. Aging 22, 541–546 (2001).

Miners, J. S. et al. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 34, 181–193 (2008).

Papassotiropoulos, A. et al. Genes involved in brain cholesterol metabolism are associated with the risk for Alzheimer's disease and with disease related traits. Neurobiol. Aging 23, S268 (2002).

Papassotiropoulos, A. et al. Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer's disease. Neurodegener. Dis. 2, 233–241 (2005).

Zerbinatti, C. V. et al. Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein. Mol. Neurodegener 3, 5 (2008).

Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer's disease: the cholesterol connection. Nature Neurosci. 6, 345–351 (2003).

Kalamida, D. et al. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 274, 3799–3845 (2007).

Kawamata, J. & Shimohama, S. Association of novel and established polymorphisms in neuronal nicotinic acetylcholine receptors with sporadic Alzheimer's disease. J. Alzheimers Dis. 4, 71–76 (2002).

Cook, L. J. et al. Candidate gene association studies of the α4 (CHRNA4) and β2 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer's disease. Neurosci. Lett. 358, 142–146 (2004).

Oddo, S. & LaFerla, F. M. The role of nicotinic acetylcholine receptors in Alzheimer's disease. J. Physiol. (Paris) 99, 172–179 (2006).

Tohgi, H., Utsugisawa, K., Yoshimura, M., Nagane, Y. & Mihara, M. Age-related changes in nicotinic acetylcholine receptor subunits α4 and β2 messenger RNA expression in postmortem human frontal cortex and hippocampus. Neurosci. Lett. 245, 139–142 (1998).

Zoli, M., Picciotto, M. R., Ferrari, R., Cocchi, D. & Changeux, J. P. Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J. 18, 1235–1244 (1999).

Wu, J. et al. β-Amyloid directly inhibits human α4β2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J. Biol. Chem. 279, 37842–37851 (2004).

Oddo, S. et al. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 3046–3051 (2005).

De Fusco, M. et al. The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nature Genet. 26, 275–276 (2000).

Marini, C. & Guerrini, R. The role of the nicotinic acetylcholine receptors in sleep-related epilepsy. Biochem. Pharmacol. 74, 1308–1314 (2007).

Palm, D. E., Knuckey, N. W., Primiano, M. J., Spangenberger, A. G. & Johanson, C. E. Cystatin C, a protease inhibitor, in degenerating rat hippocampal neurons following transient forebrain ischemia. Brain Res. 691, 1–8 (1995).

Yasuhara, O. et al. Expression of cystatin C in rat, monkey and human brains. Brain Res. 628, 85–92 (1993).

Balbin, M. & Abrahamson, M. SstII polymorphic sites in the promoter region of the human cystatin C gene. Hum. Genet. 87, 751–752 (1991).

Benussi, L. et al. Alzheimer disease-associated cystatin C variant undergoes impaired secretion. Neurobiol. Dis. 13, 15–21 (2003).

Paraoan, L. et al. Unexpected intracellular localization of the AMD-associated cystatin C variant. Traffic 5, 884–895 (2004).

Vinters, H. V., Nishimura, G. S., Secor, D. L. & Pardridge, W. M. Immunoreactive A4 and gamma-trace peptide colocalization in amyloidotic arteriolar lesions in brains of patients with Alzheimer's disease. Am. J. Pathol. 137, 233–240 (1990).

Sastre, M. et al. Binding of cystatin C to Alzheimer's amyloid β inhibits in vitro amyloid fibril formation. Neurobiol. Aging 25, 1033–1043 (2004).

Kaeser, S. A. et al. Cystatin C modulates cerebral β-amyloidosis. Nature Genet. 39, 1437–1439 (2007). This study applied a range of in vitro and in vivo experiments to elucidate the potential functional role of CST3 in animal models. We highlight it not for the specific results, but for the experimental approach.

Nagai, A. et al. Neuronal cell death induced by cystatin C in vivo and in cultured human CNS neurons is inhibited with cathepsin B. Brain Res. 1066, 120–128 (2005).

Levy, E., Jaskolski, M. & Grubb, A. The role of cystatin C in cerebral amyloid angiopathy and stroke: cell biology and animal models. Brain Pathol. 16, 60–70 (2006).

Liu, Y. & Rohrschneider, L. R. The gift of Gab. FEBS Lett. 515, 1–7 (2002).

Sarmay, G., Angyal, A., Kertesz, A., Maus, M. & Medgyesi, D. The multiple function of Grb2 associated binder (Gab) adaptor/scaffolding protein in immune cell signaling. Immunol. Lett. 104, 76–82 (2006).

Chapuis, J. et al. Association study of the GAB2 gene with the risk of developing Alzheimer's disease. Neurobiol. Dis. 30, 103–106 (2008).

Reynolds, C. H. et al. Phosphorylation regulates tau interactions with SH3 domains of phosphatidylinositol-3-kinase, phospholipase cγ1, GRB2 and SRC-family kinases. J. Biol. Chem. 8 May 2008 (doi:10.1074/jbc.M709715200).

Nizzari, M. et al. Amyloid precursor protein and presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling. J. Biol. Chem. 282, 13833–13844 (2007).

Rankin, J. & Ellard, S. The laminopathies: a clinical review. Clin. Genet. 70, 261–274 (2006).

Duesing, K. et al. Evaluating the association of common LMNA variants with type 2 diabetes and quantitative metabolic phenotypes in French Europids. Diabetologia 51, 76–81 (2008).

Capell, B. C. & Collins, F. S. Human laminopathies: nuclei gone genetically awry. Nature Rev. Genet. 7, 940–952 (2006).

Maraganore, D. M. et al. High-resolution whole-genome association study of Parkinson disease. Am. J. Hum. Genet. 77, 685–693 (2005).

Bertram, L. et al. Family-based association between Alzheimer's disease and variants in UBQLN1. N. Engl. J. Med. 352, 884–894 (2005).

Mackenzie, I. R. & Rademakers, R. The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 8, 237–248 (2007).

Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Rev. Neurosci. 8, 663–672 (2007). This is an excellent review on tau function and dysfunction in AD and in other neurodegenerative diseases.

Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

Stefansson, H. et al. A common inversion under selection in Europeans. Nature Genet. 37, 129–137 (2005).

Pittman, A. M., Fung, H. C. & de Silva, R. Untangling the tau gene association with neurodegenerative disorders. Hum. Mol. Genet. 15 Spec. No. 2, R188–R195 (2006).

Myers, A. J. et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol. Dis. 25, 561–570 (2007).

Rademakers, R. et al. High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum. Mol. Genet. 14, 3281–3292 (2005).

Kwok, J. B. et al. Tau haplotypes regulate transcription and are associated with Parkinson's disease. Ann. Neurol. 55, 329–334 (2004).

Kauwe, J. S. et al. Variation in MAPT is associated with cerebrospinal fluid tau levels in the presence of amyloid-β deposition. Proc. Natl Acad. Sci. USA 105, 8050–8054 (2008).

Gambetti, P., Kong, Q., Zou, W., Parchi, P. & Chen, S. G. Sporadic and familial CJD: classification and characterisation. Br. Med. Bull. 66, 213–239 (2003).

Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature 352, 340–342 (1991).

Schwarze-Eicker, K. et al. Prion protein (PrPc) promotes β-amyloid plaque formation. Neurobiol. Aging 26, 1177–1182 (2005).

Lewis, P. A. et al. Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J. Gen. Virol. 87, 2443–2449 (2006).

Baskakov, I. et al. The presence of valine at residue 129 in human prion protein accelerates amyloid formation. FEBS Lett. 579, 2589–2596 (2005).

Yamazaki, H. et al. Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J. Biol. Chem. 271, 24761–24768 (1996).

Taira, K. et al. LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler. Thromb. Vasc. Biol. 21, 1501–1506 (2001).

Andersen, O. M. et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl Acad. Sci. USA 102, 13461–13466 (2005).

Andersen, O. M. et al. Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 45, 2618–2628 (2006).

Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genet. 39, 168–177 (2007).

Offe, K. et al. The lipoprotein receptor LR11 regulates amyloid β production and amyloid precursor protein traffic in endosomal compartments. J. Neurosci. 26, 1596–1603 (2006).

Scherzer, C. R. et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol. 61, 1200–1205 (2004).

Sager, K. L. et al. Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann. Neurol. 62, 640–647 (2007).

Brewer, G. J. Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer's disease. Exp. Biol. Med. (Maywood) 232, 323–335 (2007).

Loeffler, D. A. et al. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J. Neurochem. 65, 710–724 (1995).

Smith, M. A., Harris, P. L., Sayre, L. M. & Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94, 9866–9868 (1997).

Yamamoto, A. et al. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease. J. Neurochem. 82, 1137–1147 (2002).

Huang, X., Moir, R. D., Tanzi, R. E., Bush, A. I. & Rogers, J. T. Redox-active metals, oxidative stress, and Alzheimer's disease pathology. Ann. NY Acad. Sci. 1012, 153–163 (2004).

Lee, P. L., Ho, N. J., Olson, R. & Beutler, E. The effect of transferrin polymorphisms on iron metabolism. Blood Cells Mol. Dis. 25, 374–379 (1999).

Zatta, P. et al. The C2 variant of human serum transferrin retains the iron binding properties of the native protein. Biochim. Biophys. Acta 1741, 264–270 (2005).

Robson, K. J. et al. Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer's disease. J. Med. Genet. 41, 261–265 (2004).

Raiha, I., Kaprio, J., Koskenvuo, M., Rajala, T. & Sourander, L. Alzheimer's disease in finnish twins. Lancet 347, 573–578 (1996).

Meyer, J. M. & Breitner, J. C. Multiple threshold model for the onset of Alzheimer's disease in the NAS-NRC twin panel. Am. J. Med. Genet. 81, 92–97 (1998).

Pedersen, N. L., Posner, S. F. & Gatz, M. Multiple-threshold models for genetic influences on age of onset for Alzheimer disease: findings from Swedish twins. Am. J. Med. Genet. 105, 724–728 (2001).

Lahiri, D. K., Maloney, B., Basha, M. R., Ge, Y. W. & Zawia, N. H. How and when environmental agents and dietary factors affect the course of Alzheimer's disease. Curr. Alzheimer Res. 4, 219–228 (2007).

McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008). This is a state-of-the-art review of the current status of genome-wide association studies and their implications for complex diseases.

Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C. & Balding, D. J. Genome-wide significance for dense SNP and resequencing data. Genet. Epidemiol. 32, 179–185 (2008).

DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986).

Ioannidis, J. P. et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int. J. Epidemiol. 37, 120–132 (2008).

Xu, H. et al. Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nature Med. 4, 447–451 (1998).

Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

Bertram, L. & Tanzi, R. E. Of replications and refutations: the status of Alzheimer's disease genetic research. Curr. Neurol. Neurosci. Rep. 1, 442–450 (2001).

Kehoe, P. G. et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genet. 21, 71–72 (1999).

Crawford, F. C. et al. A polymorphism in the cystatin C gene is a novel risk factor for late-onset Alzheimer's disease. Neurology 55, 763–768 (2000).

Finckh, U. et al. Genetic association of a cystatin C gene polymorphism with late-onset Alzheimer disease. Arch. Neurol. 57, 1579–1583 (2000).

Lilius, L. et al. Tau gene polymorphisms and apolipoprotein E ε4 may interact to increase risk for Alzheimer's disease. Neurosci. Lett. 277, 29–32 (1999).

Bullido, M. J. et al. A polymorphism in the tau gene associated with risk for Alzheimer's disease. Neurosci. Lett. 278, 49–52 (2000).

Casadei, V. M. et al. Prion protein gene polymorphism and Alzheimer's disease: one modulatory trait of cognitive decline? J. Neurol. Neurosurg. Psychiatry 71, 279–280 (2001).

Dermaut, B. et al. PRNP Val129 homozygosity increases risk for early-onset Alzheimer's disease. Ann. Neurol. 53, 409–412 (2003).

van Rensburg, S. J., Carstens, M. E., Potocnik, F. C., Aucamp, A. K. & Taljaard, J. J. Increased frequency of the transferrin C2 subtype in Alzheimer's disease. Neuroreport 4, 1269–1271 (1993).